Unit 10 - Week 9

Course outline

How to access the portal

Week 1
Week 2
Week 3
Week 4
Week 5
Week 6
Week 7
Week 8
Week 9
Lecture 44 :
Principle of
Invariance of Probability of Error

Lecture 45 : Binary ASK and PSK

Lecture 46 : Binary Frequency Shift Keying - I

Lecture 47 : Binary Frequency Shift Keying - II

Lecture 48 : Quadrature Phase Shift Keying - I
Lecture 49 : Quadrature Phase Shift Keying - II

Download Videos
Weekly Feedback
Quiz : Assignment
9

Assignment 9

The due date for submitting this assignment has passed. Due on 2018-10-03, 23:59 IST. As per our records you have not submitted this assignment.

1) Consider the following set of quaternary signals defined in terms of orthogonal basis $\mathbf{1}$ point functions φ_{1} and φ_{2} :
$s_{1}=0 ; s_{2}=\sqrt{2} a \varphi_{1}-\sqrt{2} a \varphi_{2} ; s_{3}=2 \sqrt{2} a \varphi_{1} ; s_{4}=\sqrt{2} a \varphi_{1}+\sqrt{2} a \varphi_{2}$
Assuming that these signals are used for transmission of four equiprobable symbols over an AWGN channel with noise power spectral density $\frac{N}{2}$, the probability of symbol error is

$$
\begin{aligned}
& P_{e}=Q\left(\sqrt{\frac{a^{2}}{N}}\right)-Q^{2}\left(\sqrt{\frac{a^{2}}{N}}\right) \\
& P_{e}=Q\left(\sqrt{\frac{2 a^{2}}{N}}\right)-2 Q^{2}\left(\sqrt{\frac{2 a^{2}}{N}}\right)
\end{aligned}
$$

$$
P_{e}=2 Q\left(\sqrt{\frac{2 a^{2}}{N}}\right)-Q^{2}\left(\sqrt{\frac{2 a^{2}}{N}}\right)
$$

$$
P_{e}=2 Q\left(\sqrt{\frac{a^{2}}{N}}\right)-Q^{2}\left(\sqrt{\frac{a^{2}}{N}}\right)
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
P_{e}=2 Q\left(\sqrt{\frac{2 a^{2}}{N}}\right)-Q^{2}\left(\sqrt{\frac{2 a^{2}}{N}}\right)
$$

2) The signal component of a coherent PSK system is defined

1 point
by $s(t)=A_{c} k \sin \left(2 \pi f_{c} t\right) \pm A_{c} \sqrt{1-k^{2}} \cos \left(2 \pi f_{c} t\right)$ where $0 \leq t \leq T_{b}$, and the plus sign corresponds to symbol 1 and the minus sign corresponds to symbol 0 . The first term represents a carrier component included for the purpose of synchronizing the receiver to the transmitter. Then, in the presence of the additive white Gaussian noise of zero mean and power spectral density $\frac{N}{2}$ and transmission of equiprobable symbols, the average probability of bit error P_{b} is

$$
\begin{aligned}
& P_{b}=\frac{1}{2} Q\left(\sqrt{\frac{2 A_{c}^{2} T_{b}\left(1-k^{2}\right)}{N}}\right) \\
& P_{b}=Q\left(\sqrt{\frac{A_{c}^{2} T_{b}\left(1-k^{2}\right)}{N}}\right)
\end{aligned}
$$

© 2014 NPTEL - Privacy \& Terms - Honor Code - FAQs -

$$
P_{b}=\frac{1}{2} Q\left(\sqrt{\frac{A_{c}^{2} T_{b}\left(1-k^{2}\right)}{N}}\right)
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$P_{b}=Q\left(\sqrt{\frac{A_{c}^{2} T_{b}\left(1-k^{2}\right)}{N}}\right)$
3) In Question-2, if 10% of the transmitted signal power is allocated to the carrier component, then bit energy-to-noise power spectral density ratio, i.e., $\frac{E_{b}}{N}$ required to obtain $P_{b}=10^{-4}$ is

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Range) 7.50,7.90

1 point

4) Equiprobable binary data transmission over an AWGN channel with noise power spectral density $\frac{N}{2}=10^{-12} W / H z$ is achieved at a bit rate $R_{b}=1 \mathrm{Mbps}$. If the average probability of bit error P_{b} is not to exceed 10^{-4} and there is a transmission loss of 40 dB , then the transmitted power in watts for coherent ASK is
Transmission loss is defined as:
$T_{\text {loss }}($ in $d B)=10 \log _{10}($ Average Transmitted Power $)-10 \log _{10}($ Average Received P (

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Range) 0.26,0.29
5) Equiprobable binary data is transmitted at the rate $R_{b}=1 \mathrm{Mbps}$ over an AWGN channel with noise power spectral density $\frac{N}{2}=10^{-10} W / H z$. For the average probability of bit error P_{b} not to exceed 10^{-4}, the required average transmitted carrier power in milliwatts for a communication link that uses coherent BFSK is ...

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Range) 2.60,2.90

