Fundamentals of Wavelets, Filter Banks and Time Frequency Analysis

Week 5 Assignment

April 3, 2017

- 1. $G_0(z)$ and $G_1(z)$ are low-pass and high pass synthesis side filters respectively and $H_0(z)$ and $H_1(z)$ are low-pass and high-pass analysis side filters respectively. Identify the correct relations between them along with the correct property.
 - (a) $G_0(z) = H_1(-z), G_1(z) = -H_0(-z)$, Alias Cancellation
 - (b) $G_0(z) = H_1(-z), G_1(z) = -H_0(-z)$, Power Complementarity
 - (c) $G_0(z) = H_1(z), G_1(z) = -H_0(-z)$, Alias Cancellation
 - (d) $G_0(z) = H_1(z), G_1(z) = -H_0(-z)$, Power Complementarity

Solution: (a). Due to alias cancellation we require the following relation to hold true $T_1(z) = G_0(z)H_0(-z) + G_1(z)H_1(-z) = 0$. Hence if $G_0(z) = H_1(-z)$, then we get the relation $G_1(z) = -H_0(-z)$

- 2. Which of the following Z-Transforms satisfy the property: $H_0(e^{-j\omega}) = \frac{1}{H_0(e^{j\omega})}$
 - (a) $i + z^{-1}$
 - (b) $1 + z^{-1}$
 - (c) $\frac{1}{\sqrt{2}}(i+z^{-1})$
 - (d) $\frac{1}{i\sqrt{2}}(1+z^{-1})$

Solution: (b). The given property $H_0(e^{-j\omega}) = \overline{H_0(e^{j\omega})}$ is satisfied by real sequences. Hence (b) is the only sequence for which the relation holds true.

- 3. $H_0(e^{j\omega})$ is a bandpass filter with cutoff frequencies at $\pi/4$ and $3\pi/4$. Thus $H_0(-e^{j\omega})$ is a _____ filter with cutoff frequency(s) at ____?
 - (a) Bandpass, $(\pi/4 \text{ and } 3\pi/4)$
 - (b) Bandstop, $(\pi/4 \text{ and } 3\pi/4)$
 - (c) Highpass, $3\pi/4$
 - (d) Highpass, $\pi/4$

Solution: (a) as $H_0(-e^{j\omega}) = H_0(e^{j(\omega+\pi)})$ and thus the frequency shifts by π making the bandpass filter as bandstop.

4. To derive the second member of the Daubechy filterbank family, we wrote the following condition:

$$(-1)^{D}H_{0}(z)H_{0}(z^{-}1) - H_{0}(-z)H_{0}(-z^{-}1) = c_{0}$$

What should D be?

- (a) 1
- (b) 2
- (c) 3
- (d) 4

Solution: (c). *D* for nth member of Daubechy wavelet family will be 2n - 1.

- 5. For the third member of the family, we'll get D = ?
 - (a) 2
 - (b) 3
 - (c) 4
 - (d) 5

Solution: (d) D for nth member of Daubechy wavelet family will be 2n - 1.

- 6. Let h(n) = 1, -1/2, 1/4, -1/8,.... Its z transform is represented by $H_0(z)$. Then, the constant term in $H_0(z)H_0(z^{-1})$ is
 - (a) 1
 - (b) 2
 - (c) 4/3
 - (d) ∞

Solution: (c). $H(z)H(z^{-1}) = Z(h[n] * h[-n])$. Thus the constant term of polynomial is given by $\sum h^2[n] = 1 + 1/4 + 1/16 + ... = \frac{4}{3}$

- 7. Which of the following transfer functions have the same frequency magnitude response?
 - (a) $1 + z^{-1}, 1 z^{-1}$
 - (b) $1 + z^{-1} \cdot z^{-1}$
 - (c) $1 + z^{-1}, z^{-3} + z^{-4}$
 - (d) $z^{-1} + z^{-2}, 1 z^{-1}$

Solution: (c). $1 + z^{-1} = z^3(z^{-3} + z^{-4})$ Time delay only changes phase part of the frequency response.

- 8. If f(z) + f(-z) = g(z) where f(.) is a polynomial function, then g(.)
 - (a) is a constant.
 - (b) has only non zero even powers
 - (c) has only non zero odd powers
 - (d) must have no constant term

Solution: b. f(z) + f(-z) contains the even powers only as the odd powers are cancelled out by each other.

- 2] = ?
 - (a) Information insufficient
 - (b) 0
 - (c) 1/2
 - (d) $\sum h^2[n]$

Solution (b). We know from given condition that K(z) has no power of z^{-2} . This implies that $\sum h[n]h[n-2] = \text{coefficient of } z^{-2}$ in K(z) is 0.

- 10. Second member of the Daubechy filterbank family has:
 - (a) 2 roots at z = -1
 - (b) 2 roots at z = +1
 - (c) 3 roots at z = -1
 - (d) 3 roots at z = +1

Solution: (a). As an extension from the Haar wavelet we impose an extra root at z = -1 to find the second member of the family.

11. If x[n] = [1, -1/2]. Thus, let Y(z) = log(X(z)).

Find the corresponding sequence y[n]. (Hint: $log(1-x) = -\sum_{k=1}^{\infty} \frac{x^k}{k}$ for |x| < 1).

Note: The first element in the sequence is the zeroth element

- (a) $[0, \frac{1}{2}, \frac{-1}{4 \times 2}, \frac{1}{8 \times 3}...]$ for $|z| > \frac{1}{2}$ (b) $[0, \frac{-1}{2}, \frac{-1}{4\times 2}, \frac{-1}{8\times 3}...]$ for $|z| > \frac{1}{2}$ (c) $\left[0, \frac{-1}{2}, \frac{-1}{4\times 2}, \frac{-1}{8\times 3}...\right]$ for $|z| < \frac{1}{2}$
- (d) $[0, \frac{1}{2}, \frac{-1}{4\times 2}, \frac{1}{8\times 3}...]$ for $|z| < \frac{1}{2}$

Solution: (b). $Y(z) = log(1 - \frac{1}{2}z^{-1}) = -\sum \frac{(\frac{1}{2^k}z^{-k})}{k}$ for $|\frac{1}{2}z^{-1}| < 1$. Thus the corresponding sequence of Y(z) is (b).

- 12. If the third member of the Daubechy filterbank wavelet family is given by $h = [h_0, h_1, h_2, h_3, ..., h_n, ...]$, then which of the following statements are true?
 - (a) $h_n = 0$ for n \downarrow 6

- (b) $h_n = 0$ for n \vdots 6 and n \vdots 3
- (c) $h_n = 0$ for n $\downarrow 5$
- (d) $h_n = 0$ for n \vdots 5 and n \vdots 2

Solution (c). The length of the third member of the wavelet family is 6, hence $h_n = 0$ for n \downarrow 5.

- 13. Second member of the Daubechy filterbank family annhilates _____
 - (a) polynomials of degree 1 in the low pass filter.
 - (b) polynomials of degree 2 in the low pass filter.
 - (c) polynomials of degree 1 in the high pass filter.
 - (d) polynomials of degree 2 in the high pass filter.

Solution: (c). Haar wavelet annihilates a zero degree polynomial in the high pass filter and hence the second member is designed to annihilate degree 1 polynomials and hence is a 'stronger' high pass filter.

- 14. Which of the following is a minimum phase system?
 - (a) $1 + 0.99z^{-1}$
 - (b) $0.99 + z^{-1}$
 - (c) $(1+0.99z^{-1})(1+2z^{-1})$
 - (d) $(1+z^{-1})(1+2z^{-1})$

Solution: (a). Minimum Phase system is such that its inverse is causal and stable. Thus the poles and zeros of the system lie inside the unit circle.

- 15. Consider $h_0(t)$ to be a signal of support L. Define $h_n(t) := h_0(2^n t)$. Thus the signal $y(t) = h_0(t) * h_1(t) * h_2(t)$... has a length equal to
 - (a) 3L/2
 - (b) 5L/4
 - (c) 7L/4
 - (d) 2L

Solution: (d). Convolution of two sequences leads to output of length equal to sum of each sequence. Thus total length of y(t) = L + L/2 + L/4 + ... = 2L