Fundamentals of Wavelets, Filter Banks and Time Frequency Analysis

Week 5 Assignment

April 3, 2017

1. $G_{0}(z)$ and $G_{1}(z)$ are low-pass and high pass synthesis side filters respectively and $H_{0}(z)$ and $H_{1}(z)$ are low-pass and high-pass analysis side filters respectively. Identify the correct relations between them along with the correct property.
(a) $G_{0}(z)=H_{1}(-z), G_{1}(z)=-H_{0}(-z)$, Alias Cancellation
(b) $G_{0}(z)=H_{1}(-z), G_{1}(z)=-H_{0}(-z)$, Power Complementarity
(c) $G_{0}(z)=H_{1}(z), G_{1}(z)=-H_{0}(-z)$, Alias Cancellation
(d) $G_{0}(z)=H_{1}(z), G_{1}(z)=-H_{0}(-z)$, Power Complementarity

Solution: (a). Due to alias cancellation we require the following relation to hold true $T_{1}(z)=G_{0}(z) H_{0}(-z)+G_{1}(z) H_{1}(-z)=0$. Hence if $G_{0}(z)=$ $H_{1}(-z)$, then we get the relation $G_{1}(z)=-H_{0}(-z)$
2. Which of the following Z-Transforms satisfy the property: $H_{0}\left(e^{-j \omega}\right)=$ $\overline{H_{0}\left(e^{j \omega}\right)}$
(a) $i+z^{-1}$
(b) $1+z^{-1}$
(c) $\frac{1}{\sqrt{2}}\left(i+z^{-1}\right)$
(d) $\frac{1}{\sqrt{2}}\left(1+z^{-1}\right)$

Solution: (b). The given property $H_{0}\left(e^{-j \omega}\right)=\overline{H_{0}\left(e^{j \omega}\right)}$ is satisfied by real sequences. Hence (b) is the only sequence for which the relation holds true.
3. $H_{0}\left(e^{j \omega}\right)$ is a bandpass filter with cutoff frequencies at $\pi / 4$ and $3 \pi / 4$. Thus $H_{0}\left(-e^{j \omega}\right)$ is a \qquad filter with cutoff frequency(s) at \qquad ?
(a) Bandpass, $(\pi / 4$ and $3 \pi / 4)$
(b) Bandstop, ($\pi / 4$ and $3 \pi / 4$)
(c) Highpass, $3 \pi / 4$
(d) Highpass, $\pi / 4$

Solution: (a) as $H_{0}\left(-e^{j \omega}\right)=H_{0}\left(e^{j(\omega+\pi)}\right)$ and thus the frequency shifts by π making the bandpass filter as bandstop.
4. To derive the second member of the Daubechy filterbank family, we wrote the following condition:

$$
(-1)^{D} H_{0}(z) H_{0}\left(z^{-} 1\right)-H_{0}(-z) H_{0}\left(-z^{-} 1\right)=c_{0}
$$

What should D be?
(a) 1
(b) 2
(c) 3
(d) 4

Solution: (c). D for nth member of Daubechy wavelet family will be 2 n - 1 .
5. For the third member of the family, we'll get $\mathrm{D}=$?
(a) 2
(b) 3
(c) 4
(d) 5

Solution: (d) D for nth member of Daubechy wavelet family will be 2 n 1.
6. Let $\mathrm{h}(\mathrm{n})=1,-1 / 2,1 / 4,-1 / 8, \ldots$. Its z transform is represented by $H_{0}(z)$. Then, the constant term in $H_{0}(z) H_{0}\left(z^{-1}\right)$ is
(a) 1
(b) 2
(c) $4 / 3$
(d) ∞

Solution: (c). $H(z) H\left(z^{-} 1\right)=Z(h[n] * h[-n])$. Thus the constant term of polynomial is given by $\sum h^{2}[n]=1+1 / 4+1 / 16+\ldots=\frac{4}{3}$
7. Which of the following transfer functions have the same frequency magnitude response?
(a) $1+z^{-1}, 1-z^{-1}$
(b) $1+z^{-1}, z^{-1}$
(c) $1+z^{-1}, z^{-3}+z^{-4}$
(d) $z^{-1}+z^{-2}, 1-z^{-1}$

Solution: (c). $1+z^{-1}=z^{3}\left(z^{-3}+z^{-4}\right)$ Time delay only changes phase part of the frequency response.
8. If $f(z)+f(-z)=g(z)$ where $f($.$) is a polynomial function, then g($.
(a) is a constant.
(b) has only non zero even powers
(c) has only non zero odd powers
(d) must have no constant term

Solution: b. $f(z)+f(-z)$ contains the even powers only as the odd powers are cancelled out by each other.
9. Let $K(z)+K(-z)=z^{-4}$ and $K(z)=H_{0}(z) H_{0}\left(z^{-1}\right)$. Then $\sum h[n] h[n-$ $2]=$?
(a) Information insufficient
(b) 0
(c) $1 / 2$
(d) $\sum h^{2}[n]$

Solution (b). We know from given condition that $\mathrm{K}(\mathrm{z})$ has no power of z^{-2}. This implies that $\sum h[n] h[n-2]=$ coefficient of z^{-2} in $K(z)$ is 0 .
10. Second member of the Daubechy filterbank family has:
(a) 2 roots at $\mathrm{z}=-1$
(b) 2 roots at $\mathrm{z}=+1$
(c) 3 roots at $\mathrm{z}=-1$
(d) 3 roots at $\mathrm{z}=+1$

Solution: (a). As an extension from the Haar wavelet we impose an extra root at $\mathrm{z}=-1$ to find the second member of the family.
11. If $x[n]=[1,-1 / 2]$. Thus, let $Y(z)=\log (X(z))$.

Find the corresponding sequence $y[n]$. (Hint: $\log (1-x)=-\sum_{k=1}^{\infty} \frac{x^{k}}{k}$ for $|x|<1)$.
Note: The first element in the sequence is the zeroth element
(a) $\left[0, \frac{1}{2}, \frac{-1}{4 \times 2}, \frac{1}{8 \times 3} \ldots\right]$ for $|z|>\frac{1}{2}$
(b) $\left[0, \frac{-1}{2}, \frac{-1}{4 \times 2}, \frac{-1}{8 \times 3} \ldots\right]$ for $|z|>\frac{1}{2}$
(c) $\left[0, \frac{-1}{2}, \frac{-1}{4 \times 2}, \frac{-1}{8 \times 3} \ldots\right]$ for $|z|<\frac{1}{2}$
(d) $\left[0, \frac{1}{2}, \frac{-1}{4 \times 2}, \frac{1}{8 \times 3} \ldots\right]$ for $|z|<\frac{1}{2}$

Solution: (b). $Y(z)=\log \left(1-\frac{1}{2} z^{-1}\right)=-\sum \frac{\left(\frac{1}{2 k} z^{-k}\right)}{k}$ for $\left|\frac{1}{2} z^{-1}\right|<1$. Thus the corresponding sequence of $Y(z)$ is (b).
12. If the third member of the Daubechy filterbank wavelet family is given by $h=\left[h_{0}, h_{1}, h_{2}, h_{3}, \ldots, h_{n}, \ldots\right]$, then which of the following statements are true?
(a) $h_{n}=0$ for n i 6
(b) $h_{n}=0$ for $\mathrm{n}_{\mathrm{i}} 6$ and $\mathrm{n}_{\mathrm{i}} 3$
(c) $h_{n}=0$ for n i 5
(d) $h_{n}=0$ for n ¿ 5 and $\mathrm{n} ; 2$

Solution (c). The length of the third member of the wavelet family is 6 , hence $h_{n}=0$ for $\mathrm{n} ¿ 5$.
13. Second member of the Daubechy filterbank family annhilates \qquad
(a) polynomials of degree 1 in the low pass filter.
(b) polynomials of degree 2 in the low pass filter.
(c) polynomials of degree 1 in the high pass filter.
(d) polynomials of degree 2 in the high pass filter.

Solution: (c). Haar wavelet annihilates a zero degree polynomial in the high pass filter and hence the second member is designed to annihilate degree 1 polynomials and hence is a 'stronger' high pass filter.
14. Which of the following is a minimum phase system?
(a) $1+0.99 z^{-1}$
(b) $0.99+z^{-1}$
(c) $\left(1+0.99 z^{-1}\right)\left(1+2 z^{-1}\right)$
(d) $\left(1+z^{-1}\right)\left(1+2 z^{-1}\right)$

Solution: (a). Minimum Phase system is such that its inverse is causal and stable. Thus the poles and zeros of the system lie inside the unit circle.
15. Consider $h_{0}(t)$ to be a signal of support L. Define $h_{n}(t):=h_{0}\left(2^{n} t\right)$. Thus the signal $y(t)=h_{0}(t) * h_{1}(t) * h_{2}(t) \ldots$ has a length equal to
(a) $3 \mathrm{~L} / 2$
(b) $5 \mathrm{~L} / 4$
(c) $7 \mathrm{~L} / 4$
(d) 2 L

Solution: (d). Convolution of two sequences leads to output of length equal to sum of each sequence. Thus total length of $y(t)=\mathrm{L}+\mathrm{L} / 2+$ $\mathrm{L} / 4+\ldots=2 \mathrm{~L}$

