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1. When we decompose an image into different sub-bands, the highest energy
is contained in

(a) LH sub-band.

(b) HL sub-band.

(c) LL sub-band.

(d) HH sub-band.

Ans (c)

As explained in the demonstration video, the LL sub-band contains the
maximum or the highest energy.

2. The total number of sub-bands that we will obtain after performing level
4 decomposition of an image is

(a) 13

(b) 12

(c) 14

(d) 11

Ans (a)

Level 1, level 2 and level 3 decompositions will have 3 sub-bands each and
level 4 will have 4 sub-bands which sums up to a total of 13 sub-bands.

3. Which of the following is true about down-sampling and up-sampling op-
erations?

(a) Down-sampling and up-sampling operations are linear and time in-
variant.

(b) Down-sampling and up-sampling operations are non-linear but time
invariant.
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(c) Down-sampling and up-sampling operations are linear but time vary-
ing.

(d) Down-sampling and up-sampling operations are non-linear and time
varying.

Ans (c)

Let us understand this with the help of an example. Let x1[n] = {1
↑
, 2, 3, 4}

and x2[n] = {5
↑
, 6, 7, 8} be the two different signals. Let us also con-

sider the situation of up-sampling by 2 (Later on this condition can be
generalized to up-sampling by say M). Up-sampling by M operation in-
serts (M − 1) zeros between every two consecutive samples of the signal.
Therefore Up-sampling by 2 will insert 1 zero between every two consec-
utive samples of the signal.
Now let us first up-sample both the signals and then add them. This
will result in the output signal say, xout1 = {1

↑
, 0, 2, 0, 3, 0, 4, 0} +

{5
↑
, 0, 6, 0, 7, 0, 8, 0} = {6

↑
, 0, 8, 0, 10, 0, 12, 0}. Now, let us first

add both the signals and then up-sample by 2. This will result in a signal
say, xout2 = {6

↑
, 8, 10, 12, } = {6

↑
, 0, 8, 0, 10, 0, 12, 0}. It’s clear that

xout1 = xout2.
Consider signal x1,m[n] = αx1[n] = {α

↑
, 2α, 3α, 4α}.

Up-sampling the signal x1,m by 2, we get x1,m,up[n] = {α
↑
, 0, 2α, 0, 3α, 0, 4α, 0}.

Now, first up-sampling the signal x1 by 2, we get x1,up[n] = {1
↑
, 0, 2, 0, 3, 0, 4, 0}

and then multiplying by α, we get x1,up,m[n] = {α
↑
, 0, 2α, 0, 3α, 0, 4α, 0}.

Thus, x1,m,up = x1,up,m.
Therefore, up-sampling is linear.

Again consider the signal x1[n] = {1
↑
, 2, 3, 4} and first perform shift-

ing say, by 1 and call the shifted signal as x1[n + 1] = {1, 2
↑
, 3, 4}.

Now perform up-sampling by 2 operation and we will get the output as
xout11[n] = {1, 0, 2

↑
, 0, 3, 0, 4, 0}. Now let us first up-sample the signal

by 2 and then shift it by 1 to obtain xout12[n] = {1, 0
↑
, 2, 0, 3, 0, 4, 0}.

Clearly xout11[n] 6= xout12[n] and therefore up-sampling operation is time
varying.
Following the same line of arguments it can be shown that down sam-
pling operation is also linear and time varying.

4. Let φ be the Haar scaling function as discussed in the lectures. Let m ∈ Z
be the scaling parameter and n, k ∈ Z be the translation parameters. Then
what will the following function 〈φ(2mt− n), φ(2mt− k)〉 evaluate to ?
(〈·, ·〉 represents the inner product of two functions and δ is the usual
Kronecker delta function which takes the value 1 when the variables are
equal and 0 otherwise)

(a) 0
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(b) 2−mδn−k

(c) 2mδn−k

(d) 1

Ans (b)

〈φ(2mt− n), φ(2mt− k)〉 =

∞∫
−∞

φ(2mt− n), φ(2mt− k)dt

=
1

2m

∞∫
−∞

φ(x− n), φ(x− k)〉dx

= 2−mδn−k

Here we have used the fact that Haar scaling functions are orthogonal to
integer translates i.e.

∞∫
−∞

φ(x− n), φ(x− k)〉dx =

{
0 if n 6= k

1 if n = k

5. Let ψ be the Haar wavelet function as discussed in the lectures. Let m ∈ Z
be the scaling parameter and n, k ∈ Z be the translation parameters. Then
what will the following function 〈ψ(2mt− n), ψ(2mt− k)〉 evaluate to ?
(〈·, ·〉 represents the inner product of two functions and δ is the usual
Kronecker delta function which takes the value 1 when the variables are
equal and 0 otherwise)

(a) 0

(b) 2−mδn−k

(c) 2mδn−k

(d) 1

Ans (b)

〈ψ(2mt− n), ψ(2mt− k)〉 =

∞∫
−∞

ψ(2mt− n), ψ(2mt− k)dt

=
1

2m

∞∫
−∞

ψ(x− n), ψ(x− k)〉dx

= 2−mδn−k

Here we have used the fact that Haar wavelet functions are orthogonal to
integer translates i.e.

∞∫
−∞

ψ(x− n), ψ(x− k)〉dx =

{
0 if n 6= k

1 if n = k
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6. Which of the following is correct dilation equation?
g(n) : analysis lowpass filter
h(n) : analysis highpass filter

(a) ψ(t) =
n=∞∑
n=−∞

g(n)φ(2t− n)

(b) φ(t) =
n=∞∑
n=−∞

h(n)φ(2t− n)

(c) φ(t) =
n=∞∑
n=−∞

g(n)φ(2t− 2n)

(d) ψ(t) =
n=∞∑
n=−∞

h(n)φ(2t− n)

Solution: D

This is straight forward formula based question but the only exception is
that g(n) here is analysis lowpass filter and h(n) is analysis highpass filter.
Hence,

φ(t) =

n=∞∑
n=−∞

g(n)φ(2t− n)

ψ(t) =

n=∞∑
n=−∞

h(n)φ(2t− n)

7. Let φ(t) be the scaling function for haar filter bank defined as follows:

φ(t) =

{
1, 0 ≤ t ≤ 1

0, otherwise

Calculate Fourier Transform of y(t) = φ(2t).

(a)
e
−j

Ω

4

2

(sinΩ

4
Ω

4

)

(b)
e
−j

Ω

2

2

(sinΩ

2
Ω

2

)

(c)
e
−j

Ω

8

4

(sinΩ

8
Ω

8

)

(d) None of these
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Solution: A

Fourier transform of scaling function φ(t) for haar filter bank is derived in
lecture which is as follows:

φ̂(Ω) = e
−j

Ω

2

(sinΩ

2
Ω

2

)

Using Fourier transform property, we get Fourier transform of y(t) = φ(2t)
as follows:

ŷ(Ω) =
e
−j

Ω

4

2

(sinΩ

4
Ω

4

)

8. Calculate ŷ(Ω)

∣∣∣∣
Ω=0

for the Fourier transform calculated in above question.

(a)
1

4

(b)
1

2

(c) 1

(d) ∞

Solution: B

ŷ(Ω)

∣∣∣∣
Ω=0

= lim
Ω→0

e
−j

Ω

4

2

(sinΩ

4
Ω

4

)

Also,

lim
x→0

sin(x)

x
= 1

Using above limit formula, we get

ŷ(Ω)

∣∣∣∣
Ω=0

= 0.5

9. Following Fourier transform property is derived in class.
If h(t) has Fourier transform H(Ω), then for α > 0 Fourier transform of

h(
t

α
) is αH(αΩ).

Which of the following statement is true?
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(a) Signal can be timelimited and bandlimited simultaneously.

(b) Signal can’t be timelimited and bandlimited simultaneously.

(c) Nothing can be said

Solution: B

Using property of Fourier transform mentioned in question, we can tell
that compression of signal in time domain results in expansion in of signal
frequency domain and vice versa. For example,Consider dc(constant) sig-
nal which is not time limited but it has very compactly supported Fourier
transform which is impulse(bandlimited signal). Also,bandlimited func-
tion such as low pass filter transfer function has infinite spread in time
domain.

Hence we can say that Signal can’t be timelimited and bandlimited simul-
taneously.

10. If we have following frequency domain equation,what would be equivalent
equation in time domain?

φ̂(Ω) = H(
Ω

3
)φ̂(

Ω

4
)

(a) φ(t) = h(3t) ∗ φ(4t)

(b) φ(t) = 12× h(4t) ∗ φ(3t)

(c) φ(t) = 12× h(3t) ∗ φ(4t)

(d) None of these

Solution: C

Following Fourier transform property is discussed in lectures:

h(t)
F−→ H(Ω) =⇒ h(

t

α
)

F−→ αH(αΩ) , α > 0 (1)

Where, F denotes Fourier transform operator. Using above property,

3h(3t)
F−→ H(

Ω

3
)

4φ(4t)
F−→ φ̂(

Ω

4
)
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Also, we know that product of two functions in time domain results in
convolution of two functions in frequency domain. Combining all these,
we get

φ(t) = 12× h(3t) ∗ φ(4t)

where * denotes convolution.

11. As we have seen in lecture that scaling function φ(t) can be obtained by
infinite convolution as follows:
φ(t) = h(2t) ∗ h(4t) ∗ h(8t) ∗ .....
where h(t) =

∑n=∞
n=−∞ h(n)δ(t− n) and h[n] = {1, 1}.

Now consider φ(t) = h(2t)∗h(4t)∗h(8t)∗....∗h(2N t). Calculate the largest
value of t for which φ(t) is non zero.

(a)
2N − 1

2N

(b)
1

2N

(c)
2N − 1

2N + 1

(d) can’t be determined

Solution: A

Consider convolution of two signals x1(t) and x2(t). Let x1(t) and x2(t)
be non-zero in the interval [0, a] and [0, b] respectively.
If y(t) = x1(t) ∗ x2(t) then y(t) will be non-zero in the interval [0, a+ b].

h(2N t) will have non-zero value only in the time interval [0, 2−N ]

Let z1(t) = h(2 ∗ t) ∗ h(4 ∗ t) then z1(t) will be non-zero in the range

[0,
1

2
+

1

4
].

Let z2(t) = z1(t) ∗ h(8 ∗ t) then z1(t) will be non-zero in the range

[0,
1

2
+

1

4
+

1

8
].

Extending above argument, φ(t) = h(2t) ∗ h(4t) ∗ h(8t) ∗ .... ∗ h(2N t) will

be non-zero in the range [0,
1

2
+

1

4
+

1

8
+

1

16
+ .............+

1

2N
].

Using formula for geometric series, Sn = a+ar+ar2+....+arn = a
rn − 1

r − 1
,

We get φ(t) is non-zero in the interval [0,
2N − 1

2N
]

12. In above question, let the length of the filter h(t) be L. Then calculate
the largest value of t for which φ(t) is non zero as N →∞
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(a) 1

(b) L− 1

(c)
L

2

(d) L

Solution: B

Since length of filter h(n) is L, h(t) will be non-zero in the interval [0, L−1].

Hence, h(2N t) will have non-zero value only in the time interval [0, 2−N ∗
(L− 1)].

Let z1(t) = h(2 ∗ t) ∗ h(4 ∗ t), then z1(t) will be non-zero in the range

[0,
L− 1

2
+
L− 1

4
].

Let z2(t) = z1(t) ∗ h(8 ∗ t), then z2(t) will be non-zero in the range

[0,
L− 1

2
+
L− 1

4
+
L− 1

8
].

Extending above argument, φ(t) = h(2t)∗h(4t)∗h(8t)∗ ....∗h(2N t) will be

non-zero in the range [0,
L− 1

2
+
L− 1

4
+
L− 1

8
+
L− 1

16
+.............+

L− 1

2N
].

Using formula for geometric series, Sn = a+ar+ar2+....+arn = a
rn − 1

r − 1
,

We get φ(t) is non-zero in the interval [0, (L− 1)
2N − 1

2N
]

As N →∞, φ(t) is non-zero in the interval [0, L− 1]

13. Let x(t) = δ(t) be impulse(Dirac delta) function. what will be the signal
y(t) whose Fourier transform is given as follows?

ŷ(Ω) = x̂(
Ω

5
).

(a) 5δ(t)

(b) δ(t)

(c)
1

5
δ(t)

(d) δ(5t)

Solution: B
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Using Fourier transform scaling property,

ŷ(Ω) = x̂(
Ω

5
) =⇒ y(t) = 5x(5t) = 5δ(5t)

Impulse(dirac delta) function has following property:

δ(at) =
1

|a|
δ(t)

Thus,

y(t) = 5δ(5t) = δ(t)

14. Consider a signal x(t) defined as follows.

x(t) =

{
1− |t|, −1 ≤ t ≤ 1

0, otherwise

Let piece-wise constant representation of x(t) on space Vm using haar
MRA be denoted by xm(t). Then work out the energy in the error function
as a function of m defined as follows: Error function = x(t)− xm(t)

(a)
1

6
2−2m

(b)
1

3
2−m

(c)
1

3
2−2m

(d)
1

6
2−m

Solution: A

Let us consider x2(t) as piecewise constant approximation of function x(t)
on space V2 shown in figure below:

As seen from figure,energy in error between x(t) and x2(t) is same in all
the time intervals [n2−m, (n+ 1)2−m] , m = 2 and n ∈ Z.

Hence total energy in error function = total number of intervals of size
2−m in time-interval [−1, 1] × energy in error function in the interval
[0, 2−m].

Total number of intervals of size 2−m in [−1, 1] = 2m+1.

Energy in the error function E

= 2m+1

∫ 2−m

0

|x(t)− xm(t)|2dt (2)

This integral can be solved by directly substituting x(t) and xm(t) but it
will involve lots of computations so we use following method.

Figure 2 shows zoomed view of x(t) and xm(t) for m = 2 and in the range
[0, 2−m].
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Figure 1

Now,Let us calculate xm(t) in the interval [0, 2−m].

xm(t) = average of x(t)

∣∣∣∣
t

= 0andx(t)

∣∣∣∣
t

= 2−m (3)

=
1 + 1− 2−m

2

= 1− 2−(m+1)

Since we are only interested in finding error energy between x(t) and
xm(t),we subtract 1 from x(t) and xm(t) both and multiply both by -
1.Doing so won’t change the energy in error as shown in fig 3.

This leads to x(t) = t and xm(t) = 2−(m+1).

Using this approach,Energy in error function in interval [0, 2−m] is given
by following integral:
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Figure 2

Ê =

∫ 2−m

0

(t− 2−(m+1))2dt (4)

=
(t− 2−(m+1))3

3

∣∣∣∣2−m

0

=
(2−m − 2−(m+1))

3

3
+

2−3(m+1)

3

= 2−3m

 (1− 1

2
)
3

3
+

1

24


=

1

12
2−3m

From eq (2), Total energy in the error signal E is given by

E = Ê × 2m+1 (5)

=
1

12
2−3m2m+1

=
2−2m

6

15. Let x[n] be a discrete time signal given by

x1[n] = {−1
↑
, 3, 5, 23, 1, 0}
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Figure 3

x2[n] = {−1
↑
, 0, 5, 0, 1, 0}

If the above signals are subjected to down-sampling by 2 operation, then
which signal will suffer aliasing and which signal won’t ?

(a) x1[n] will be not get aliased whereas x2[n] will suffer from aliasing.

(b) Both signals x1[n] and x2[n] will not get aliased.

(c) x1[n] will be aliased and x2[n] will not get aliased.

(d) Both signals x1[n] and x2[n] will get aliased.

Ans (c) When a signal is subjected to a downsampling operation then
it May result in aliasing in the spectrum of the signal, but this is not
necessary. When signal x2[n] passes through a downsampler by 2 then
the output sequence obtained is {−1

↑
, 5, 1} and when this signal is again

passed through an upsampler by 2 then we would get our original sequence
x2[n] = {−1

↑
, 0, 5, 0, 1, 0}. Therefore, no aliasing was done to the signal on

passing through the downsampler by 2.
This is certainly not the case with the signal x1[n], and thus it suffers from
aliasing problem.

16. If a signal x[n] is passed through a M-point downsampler, then what is
the z-transform of the output signal ?

(a)
1

M

M−1∑
k=0

X(z
−1
M e

j2πk
M ) where k = 0, 1, 2, 3, · · · ,M − 1

(b)
1

M

M∑
k=0

X(z
−1
M e

j2πk
M ) where k = 0, 1, 2, 3, · · · ,M
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(c)
1

M

M−1∑
k=0

X(z
1
M e

j2πk
M ) where k = 0, 1, 2, 3, · · · ,M − 1

(d)
1

M

M−1∑
k=0

X(z
1
M e

−j2πk
M ) where k = 0, 1, 2, 3, · · · ,M − 1

Ans (d)
Following the same steps as discussed in the lecture we can obtain the
z-transform of the output signal. We can break down the process in two
steps, wherein the first step involves ”multiplication of the signal by killing
sequence (a window)” and in the second step we have an upsampling
process in the opposite direction(i.e its an upsampling process as seen
from the output towards input side and we know that the upsampling
process is an invertible process).
The killing sequence for the downsampling by M must have a repeating
sequence of {1

↑
, 0, 0, · · · , 0(M−1times)}. The periodic killing sequence can

be represented in the inverse DFT transform form as

PM [n] =
1

M

M−1∑
k=0

B(k)(e
j2πnk
M ) where k = 0, 1, 2, 3, · · · ,M − 1

=
1

M

M−1∑
k=0

e
j2πnk
M where k = 0, 1, 2, 3, · · · ,M − 1

STEP 1: The z-transform of the product of input sequence x[n] and pM [n]
is therefore,

X̂M (Z) =

∞∑
n=−∞

[
1

M
x[n]

M−1∑
k=0

e
j2πnk
M ]z−n where k = 0, 1, 2, 3, · · · ,M − 1

=
1

M

M−1∑
k=0

[

∞∑
n=−∞

x[n]e
j2πnk
M z−n] where k = 0, 1, 2, 3, · · · ,M − 1

=
1

M

M−1∑
k=0

[

∞∑
n=−∞

x[n](e
−j2πk
M z)−n] where k = 0, 1, 2, 3, · · · ,M − 1

=
1

M

M−1∑
k=0

X(ze
−j2πk
M ) where k = 0, 1, 2, 3, · · · ,M − 1

STEP 2: In this step the above output signal is passed through an upsam-
pler by M by in the reverse direction (i.e. its an upsampling process as
seen from the output towards input side). Therefore the result so obtained
after this process is

Xout(Z) = X̂M (Z
1
M ) =

1

M

M−1∑
k=0

X(z
1
M e

−j2πk
M ) where k = 0, 1, 2, 3, · · · ,M − 1
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