Fundamentals of Wavelets, Filter Banks and Time Frequency Analysis

Week 1 Assignment

March 7, 2017

1. What is the Fourier transform of the following function ?

$$f(t) = \begin{cases} e^{-|t|} & \text{if } |t| < 1\\ 0 & \text{otherwise} \end{cases}$$

(a)
$$\frac{2}{1+\Omega^2} - \frac{e^{-(1+j\Omega)}}{1+j\Omega} + \frac{e^{-(1-j\Omega)}}{1-j\Omega}$$

(b) $\frac{2j\Omega}{1+\Omega^2} - \frac{e^{-(1+j\Omega)}}{1+j\Omega} + \frac{e^{-(1-j\Omega)}}{1-j\Omega}$
(c) $\frac{2j\Omega}{1+\Omega^2} + \frac{e^{-(1+j\Omega)}}{1+j\Omega} - \frac{e^{-(1-j\Omega)}}{1-j\Omega}$
(d) $\frac{2}{1+\Omega^2} - \frac{e^{-(1+j\Omega)}}{1+j\Omega} - \frac{e^{-(1-j\Omega)}}{1-j\Omega}$

 $\mathbf{Ans}\ (d)$

$$\begin{split} F\left(\Omega\right) &= \int_{-\infty}^{\infty} f\left(t\right) e^{-j\Omega t} dt = \int_{-1}^{0} e^{t} e^{-j\Omega t} dt + \int_{0}^{1} e^{-t} e^{-j\Omega t} dt \\ &= \frac{e^{(1-j\Omega)t}}{1-j\Omega} \Big|_{-1}^{0} - \frac{e^{-(1+j\Omega)t}}{1+j\Omega} \Big|_{0}^{1} = \frac{1}{1-j\Omega} - \frac{e^{-(1-j\Omega)}}{1-j\Omega} - \frac{e^{-(1+j\Omega)}}{1+j\Omega} + \frac{1}{1+j\Omega} \\ &= \frac{2}{1+\Omega^{2}} - \frac{e^{-(1+j\Omega)}}{1+j\Omega} - \frac{e^{-(1-j\Omega)}}{1-j\Omega} \end{split}$$

- 2. Let $x[n] = e^{-2n}u[n]$ be the input to a system. Which of the following impulse responses gives the bounded output for this input?
 - (a) h[n] = n(b) $h[n] = 2^n u[n]$
 - (c) h[n] = u[n]

(d)
$$h[n] = 0.5^n u[n]$$

Ans (d)

A system is said to be BIBO stable if it's impulse response is absolutely summable, i.e.

$$\sum_{-\infty}^{\infty} |h[n]| < \infty \Rightarrow \text{BIBO stable system}$$

Out of all the options only $h[n] = 0.5^n u[n]$ is absolutely summable.

- 3. Given $x[n] = 2^{-n}u[n]$. Find l_2 norm of the sequence.
 - (a) $\frac{2}{3}$ (b) $\frac{2}{\sqrt{3}}$ (c) 2 (d) $\sqrt{2}$

Ans (b)

By definition, the l_p norm of a function $\boldsymbol{y}[n]$ is defined as

$$\|y[n]\|_p = \left(\sum_{n=-\infty}^{\infty} |y[n]|^p\right)^{\frac{1}{p}}$$

Therefore the l_2 norm of x[n] is $= ||x[n]||_2 = \left(\sum_{n=0}^{\infty} |\frac{1}{4}|^n\right)^{\frac{1}{2}} = \frac{2}{\sqrt{3}}$

4. Find the L_4 -norm of the following function:

$$f(x) = \begin{cases} x & \text{if } |x| < 1\\ 0 & \text{otherwise} \end{cases}$$

(a)
$$\left(\frac{2}{5}\right)^{\frac{1}{4}}$$

(b) $\left(\frac{1}{5}\right)^{\frac{1}{4}}$
(c) $\left(\frac{1}{4}\right)^{\frac{1}{4}}$

(d)
$$\left(\frac{1}{2}\right)^{\frac{1}{4}}$$

Ans (a)

By definition, the L_p norm of a function f(t) is defined as

$$||f(t)||_p = \left(\int_{-\infty}^{\infty} |f(t)|^p dt\right)^{\frac{1}{p}}$$

Therefore the L_4 norm of f(x) is

$$||f(x)||_4 = \left(\int_{-\infty}^{\infty} |f(x)|^4 dx\right)^{\frac{1}{4}} = \left(\int_{-1}^{1} |x|^4 dx\right)^{\frac{1}{4}} = \left(\frac{2}{5}\right)^{\frac{1}{4}}$$

5. Which of the following function does **not** belong to $L_2(\mathbb{R})$? (Multiple options can be correct)

$$f(t) = \begin{cases} \frac{1}{t} & \text{if } t \ge 1\\ 0 & \text{otherwise} \end{cases}$$

(b)

(a)

$$f(t) = \begin{cases} \frac{1}{t^2} & \text{if } t \ge 1\\ 0 & \text{otherwise} \end{cases}$$

$$f(t) = \begin{cases} \frac{1}{\sqrt{t}} & \text{if } t > 0\\ 0 & \text{otherwise} \end{cases}$$

(d)

$$f(t) = \begin{cases} t & \text{if } t \ge 0\\ 0 & \text{otherwise} \end{cases}$$

Ans (c),(d)

$$f(t) = \begin{cases} \frac{1}{\sqrt{t}} & \text{if } t > 0\\ 0 & \text{otherwise} \end{cases}$$

 $L_2 \text{ norm} = \left(\int_0^\infty \frac{1}{t}\right)^{\frac{1}{2}} = \left(\ln\left(t\right)\Big|_0^\infty\right)^{\frac{1}{2}}$ This definite integral is not bounded, hence the function does not belong

to $L_2(\mathbb{R})$.

$$f(t) = \begin{cases} t & \text{if } t \ge 0\\ 0 & \text{otherwise} \end{cases}$$

 $L_2 \text{ norm} = \left(\int_0^\infty t^2\right)^{\frac{1}{2}} = \left(\frac{t^3}{3}\Big|_0^\infty\right)^{\frac{1}{2}}$

This definite integral is not bounded, hence the function does not belong to $L_2(\mathbb{R})$.

Try to prove that (a), (b) have bounded L_2 norm.

6. Suppose we are given two functions $x_1(t)$ and $x_2(t)$ as

$$x_1(t) = \cos(10\pi t)$$
 and $x_2(t) = e^{-t^2} \cos(10t)$

Then which of the signals represents a wavelet or a "small wave" as discussed in the lecture?

(a) $x_1(t)$

(b) $x_2(t)$

- (c) Both $x_1(t)$ and $x_2(t)$
- (d) None of these
- Ans (b)

As told in lecture1, wavelets are waves that last for a finite time. They may be significant in a certain region of time and insignificant elsewhere or they might exist only for finite time duration.

It can be observed from the following figure that $x_2(t)$ decays very rapidly because of the decaying exponential multiple (in fact it's a Gaussian term) in it. So it does not exists forever and can be considered as a wavelet.

Note: In fact this signal $x_2(t)$ is called a Morlet wavelet.

7. Let $\phi(t)$ and $\psi(t)$ be the Haar scaling and wavelet functions. Which one of the following relationship holds?

(a) $\psi(t) = \phi(t) - \phi(t-1)$ (b) $\psi(t) = \phi(2t) + \phi(2t-1)$ (c) $\psi(t) = \phi(2t) - \phi(2t-1)$ (d) $\psi(t) = \phi(2t) - \phi(2t+1)$

Ans (c)

As it can be clearly seen from the figure below that the relation between $\phi(t)$ and $\psi(t)$ will be

$$\psi(t) = \phi(2t) - \phi(2t - 1)$$

- 8. We know that any signal $x(t) \in L_2(\mathbb{R})$ (i.e. signal x(t) having finite energy) can be expanded as $x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{X}(\Omega) e^{j\Omega t} d\Omega$, where $\hat{X}(\Omega)$ is the Fourier transform of signal x(t). Then which of the following is true about time-frequency localization of the Fourier basis element?
 - (a) The Fourier basis element has good time localization but poor frequency localization.
 - (b) The Fourier basis element has poor time localization but good frequency localization.
 - (c) Since we can expand any finite energy signal x(t) into Fourier basis, it must have basis element exhibiting good time and frequency localizations.
 - (d) None of the above.

Ans (b)

In question 2 we saw that the complex exponential $b(t) = e^{j\Omega t}$ is the basis for Fourier transform. It has a poor time localization because of the fact that $e^{j\Omega t}$ is evenly spread over all times from $t \in (-\infty, \infty)$. The Fourier transform of $e^{j\Omega_0 t}$ is frequency shifted Dirac delta function $\delta(\Omega - \Omega_0)$ which is just an impulse at the frequency location Ω_0 . Therefore it has good frequency localization.

- 9. Suppose that we don't use Fourier basis as our basis elements and instead decide to use some other basis elements composed of shifted Dirac deltas $\delta(t-k)$, where $k \in \mathbb{Z}$. Then which of the following is true about time-frequency localization of this new basis element?
 - (a) It has good time localization but poor frequency localization.
 - (b) It has poor time localization but good frequency localization.
 - (c) It exhibits good time as well as frequency localizations.
 - (d) None of the above.

Ans (a)

Similar arguments to that of question 11 tells us that $\delta(t-k)$ has good time localization as it is just an impulse located at integer value k. The Fourier transform of $\delta(t-k)$ is $e^{-j\Omega k}$ and therefore the magnitude of its Fourier transform is $1 \forall \Omega \in (-\infty, \infty)$. Therefore as it is spread at all frequencies, it has very poor frequency localization.

Note: Question 11 and Question 12 gave a glance of the Uncertainty principle in time and frequency, i.e., the resolution in time domain can be increased at the compromise of resolution in frequency domain and vice-versa.

- 10. Which of the following pair of functions are orthogonal? (More than one may be correct)
 - (a) $\phi(t), \psi(2t)$
 - (b) $\phi(t), \psi(t)$
 - (c) $\phi(t-m), \psi(t-n), m \neq n$
 - (d) All of the above

Ans (d)

If the angle between x(t) and y(t) is θ then $\cos(\theta) = \frac{\langle x(t), y(t) \rangle}{\|x(t)\|_2 \|y(t)\|_2}$, where $\langle x(t), y(t) \rangle = \int_{-\infty}^{\infty} x(t) \overline{y(t)} dt$. We know that $\langle \phi(t), \psi(2t) \rangle = 0$ and $\langle \phi(t), \psi(t) \rangle = 0$, so both options (a) and (b) are correct. Also we can show that $\langle \phi(t-m), \psi(t-n) \rangle = 0$ whenever $m \neq n$. Thus option (c) is also orthogonal function pair.

- 11. Which of the following is **not** a subspace of \mathbb{R}^3 . (More than one may be correct):
 - (a) $V = \{(a, b, c) | a, b, c \in \mathbb{R}, a + b = p, p > 0\}$
 - (b) $V = \{(a, b, c) | a, b, c \in \mathbb{R}, a + b = 0\}$
 - (c) $V = \{(a, a+1, 0) | a \in \mathbb{R}\}$
 - (d) $V = \{(a, 2a, 3a) | a \in \mathbb{R}\}$

Ans (a,c)

One of the properties of subspaces is that there should be a zero element in the subspace, such that $a + 0 = a, \forall a \in V$.

The zero element in \mathbb{R}^3 is (0,0,0) and therefore for any subspace in \mathbb{R}^3 (0,0,0) should be present in the subspace. Clearly among the four choices, options (a) and (c) does not contain (0,0,0). We should have p = 0 in option (a) so that its a subspace and in option (c) no value of $a \in \mathbb{R}$ can make (a, a + 1, 0) a zero vector.

12. Read the following to answer the questions that follows:

For piece-wise constant representation of a function in an interval, we have used the average value of the function in the given interval. Suppose we devise a new scheme in which we take the average of the maximum and minimum of the function in that interval. For example, piece-wise constant representation of a function in the interval [0,1] would be the average of maxima and minima of the function in the interval [0,1].

Consider the following function:

$$f(t) = \begin{cases} t^3 & |t| < 1\\ 0 & else \end{cases}$$

(a) What will be the representation of the function in the space V_0 using the piece-wise constant representation scheme covered in the lecture (Let us call this scheme A i.e, taking the average of the function in an interval as it's piece-wise constant value in that interval)

i.
$$\frac{-1}{2}, \frac{1}{2}$$

ii. $\frac{-1}{3}, \frac{1}{3}$
iii. $\frac{-1}{4}, \frac{1}{4}$
iv. $\frac{-1}{5}, \frac{1}{5}$

Ans (iii)

In the subspace V_m the piecewise constant representation is over the intervals of size 2^{-m} , hence in V_0 we have unit intervals in which we denote the function by a constant value.

In an interval]n, n+1[, the constant value is given by $\int_{n}^{n+1} f(t) dt$. Therefore

the value in interval]0,1[is $\int_{0}^{1} t^{3} dt = \frac{1}{4}.$

Similarly for the interval]-1,0[the piece-wise constant value is $\frac{-1}{4}$.

(b) Find the representation of a function in V_0 using the new scheme mentioned in the passage above.(Let us call this scheme B, i.e, taking the average of maximum and minimum value to be piece-wise constant value in a given interval)

i.
$$\frac{-1}{2}, \frac{1}{2}$$

ii. $\frac{-1}{3}, \frac{1}{3}$
iii. $\frac{-1}{4}, \frac{1}{4}$
iv. $\frac{-1}{5}, \frac{1}{5}$

Ans (i)

The maximum and minimum value for the interval [0, 1] are 0, 1 respectively, which gives the piece-wise constant value $\frac{1}{2}$. Similarly, for interval [-1, 0] piece-wise constant value is $\frac{-1}{2}$

(c) Find out the representation of the function in V_1 using the scheme B.

i.
$$\frac{-9}{16}, \frac{-1}{16}, \frac{1}{16}, \frac{9}{16}$$

ii. $\frac{-9}{8}, \frac{-1}{8}, \frac{1}{8}, \frac{9}{8}$
iii. $\frac{-9}{8}, \frac{-1}{16}, \frac{1}{16}, \frac{9}{8}$
iv. $\frac{-9}{16}, \frac{-1}{8}, \frac{1}{8}, \frac{9}{16}$

Ans (i)

Piece-wise constant value in $[0, \frac{1}{2}] = \frac{0 + \frac{1}{8}}{2} = \frac{1}{16}$ Piece-wise constant value in $[\frac{1}{2}, 1] = \frac{\frac{1}{8} + 1}{2} = \frac{9}{16}$ Piece-wise constant value in $[\frac{-1}{2}, 0] = \frac{\frac{-1}{8} + 0}{2} = \frac{-1}{16}$ Piece-wise constant value in $[-1, \frac{-1}{2}] = \frac{-1 + \frac{-1}{8}}{2} = \frac{-9}{16}$

(d) We define error between the function and its piece-wise constant representation as $e(t) = (f(t) - f'(t))^2$, where f(t) is the original function and f'(t) is its piece-wise constant representation at any given resolution. What is the average value of error using Scheme A and Scheme B respectively?

i.
$$\frac{9}{56}, \frac{1}{7}$$

ii. $\frac{9}{112}, \frac{1}{7}$
iii. $\frac{9}{112}, \frac{2}{7}$
iv. $\frac{9}{56}, \frac{2}{7}$

Ans (ii) First, let us calculate average error for scheme A.

$$\overline{e(t)} = \frac{1}{2} \int_{-1}^{1} e(t)dt$$
$$= \frac{1}{2} \int_{-1}^{0} (t^3 + \frac{1}{4})^2 dt + \frac{1}{2} \int_{0}^{1} (t^3 - \frac{1}{4})^2 dt$$
$$= \frac{9}{112}$$

Now let us calculate error for Scheme B.

$$\overline{e(t)} = \frac{1}{2} \int_{-1}^{1} e(t)dt$$
$$= \frac{1}{2} \int_{-1}^{0} (t^3 + \frac{1}{2})^2 dt + \frac{1}{2} \int_{0}^{1} (t^3 - \frac{1}{2})^2 dt$$
$$= \frac{1}{7}$$