Fundamentals of Wavelets, Filter Banks and Time Frequency Analysis

Week 4 Assignment

March 24, 2017

1. If $\mathbf{X}(\mathbf{z})$ is passed through
a) An M-fold decimator followed by an M-fold expander.
b) An M-fold expander followed by an M-fold decimator.

The outputs from a) and b) will
(a) be identical
(b) be identical up to a sign
(c) be such that b) is M times a)
(d) None of the above

Ans: D Solution: An expander followed by a decimator gives back the original signal, but a decimator followed by an expander contains aliased components. Hence they cannot be identical.
2. If $\mathbf{X}(z)$ is passed through a filter with Transfer Function $\mathbf{H}(z)$, followed by a two-fold decimator, followed by a filter with Transfer Function $\mathbf{G}(z)$, the output is \qquad
(a) $\frac{\mathbf{G}(z)}{2}\left[\mathbf{H}\left(z^{\frac{1}{2}}\right) \mathbf{X}\left(z^{\frac{1}{2}}\right)+\mathbf{H}\left(z^{\frac{-1}{2}}\right) \mathbf{X}\left(z^{\frac{-1}{2}}\right)\right]$
(b) $\frac{\mathbf{H}(z)}{2}\left[\mathbf{G}\left(z^{\frac{1}{2}}\right) \mathbf{X}\left(z^{\frac{1}{2}}\right)+\mathbf{G}\left(z^{\frac{-1}{2}}\right) \mathbf{X}\left(z^{\frac{-1}{2}}\right)\right]$
(c) $\frac{\mathbf{G}(z)}{2}\left[\mathbf{H}\left(z^{\frac{1}{2}}\right) \mathbf{X}\left(z^{\frac{1}{2}}\right)+\mathbf{H}\left(-z^{\frac{1}{2}}\right) \mathbf{X}\left(-z^{\frac{1}{2}}\right)\right]$
(d) $\frac{\mathbf{H}(z)}{2}\left[\mathbf{G}\left(z^{\frac{1}{2}}\right) \mathbf{X}\left(z^{\frac{1}{2}}\right)+\mathbf{G}\left(-z^{\frac{1}{2}}\right) \mathbf{X}\left(-z^{\frac{1}{2}}\right)\right]$

Ans: C Solution: The expression for the z-transform of the output when $\mathbf{X}(\mathbf{z})$ is passed through a twofold decimator is $\mathbf{X}\left(z^{\frac{1}{2}}\right)+\mathbf{X}\left(-z^{\frac{1}{2}}\right)$. We can use this to derive the answer shown above.
3. Consider the standard two channel filter bank with analysis (synthesis) filters $\mathbf{H}_{0}(z)\left(\mathbf{G}_{0}(z)\right)$ and $\mathbf{H}_{1}(z)\left(\mathbf{G}_{1}(z)\right)$.

Give an expression for the z-transform of the signal in the upper branch just after the upsampler.
(a) $\frac{1}{2}\left[\mathbf{X}(z) \mathbf{H}_{0}\left(z^{-1}\right)+\mathbf{X}\left(z^{-1}\right) \mathbf{H}_{0}(z)\right]$
(b) $\frac{1}{2}\left[\mathbf{X}(z) \mathbf{H}_{0}(z)+\mathbf{X}\left(z^{-1}\right) \mathbf{H}_{0}\left(z^{-1}\right)\right]$
(c) $\frac{1}{2}\left[\mathbf{X}(-z) \mathbf{H}_{0}(z)+\mathbf{X}(z) \mathbf{H}_{0}(-z)\right]$
(d) $\frac{1}{2}\left[\mathbf{X}(z) \mathbf{H}_{0}(z)+\mathbf{X}(-z) \mathbf{H}_{0}(-z)\right]$

Ans: D Solution: The expression for the z-transform of the output when $\mathbf{X}(\mathbf{z})$ is passed through a twofold decimator is $\mathbf{X}\left(z^{\frac{1}{2}}\right)+\mathbf{X}\left(-z^{\frac{1}{2}}\right)$. The expression for the \mathbf{z}-transform of the output when $\mathbf{X}(\mathbf{z})$ is passed through a twofold expander is $\mathbf{X}\left(z^{2}\right)$.
We can use these to derive the answer shown above.
4. Give the expression for the output if $\mathbf{X}(z)$ is passed through a 3 -fold upsampler.
(a) $\mathbf{X}\left(\frac{z}{3}\right)$
(b) $\mathbf{X}(3 z)$
(c) $\mathbf{X}\left(z^{3}\right)$
(d) $\mathbf{X}\left(z^{-3}\right)$

Ans: C Solution: If $\mathrm{y}[\mathrm{n}]=\mathrm{x}[\mathrm{n} / 3]$ when n is a multiple of $3, \mathrm{y}[\mathrm{n}]=0$ otherwise. $\mathbf{Y}(\mathbf{z})=\sum_{n=-\mathrm{inf}}^{\mathrm{inf}} x[n] z^{-3 n}=\mathbf{X}\left(z^{3}\right)$.
5. Give the expression for the output if $\mathbf{X}(z)$ is passed through a 3-fold downsampler. Where $\omega=e^{j \frac{2 \pi}{3}}$
(a) $\frac{1}{3}\left[\mathbf{X}(z)+\mathbf{X}(\omega z)+\mathbf{X}\left(\omega^{2} z\right)\right]$
(b) $\frac{1}{3}\left[\mathbf{X}\left(z^{\frac{1}{3}}\right)+\mathbf{X}\left(\omega z^{\frac{1}{3}}\right)+\mathbf{X}\left(\omega^{2} z^{\frac{1}{3}}\right)\right]$
(c) $\frac{1}{3}\left[\mathbf{X}(z)+\mathbf{X}(3 z)+\mathbf{X}\left(\frac{z}{3}\right)\right]$
(d) $\frac{1}{3}\left[\mathbf{X}(z)+\mathbf{X}\left(z \omega^{\frac{1}{3}}\right)+\mathbf{X}\left(z \omega^{\frac{2}{3}}\right)\right]$

Ans: B Solution: Refer Proof of 4.1.4 from Multirate Systems and Filter Banks by P.P Vaidyanathan. The intuition one can use to solve this question is by using the 2 -fold downsampler. In a 2 -fold downsampler, the output is $\mathbf{X}\left(z^{\frac{1}{2}}\right)+\mathbf{X}\left(-z^{\frac{1}{2}}\right)$, as we know. This can be interpreted as summing together expanded and shifted versions of the original spectra where the expansion is by a factor of 2 and the shift is by $\frac{\pi}{2}$. Hence there are 2 terms. Hence for a threefold downsampler, we would expect to sum expanded and shifted versions of the original spectra where the expansion is by a factor of 3 and the shift is by $\frac{\pi}{3}$. Hence there will be 3 terms. A shift by $\frac{\pi}{n}$ can be represented by multiplying the argument by the n -th root of unity. Hence the answer must be $\frac{1}{3}\left[\mathbf{X}\left(z^{\frac{1}{3}}\right)+\mathbf{X}\left(\omega z^{\frac{1}{3}}\right)+\mathbf{X}\left(\omega^{2} z^{\frac{1}{3}}\right)\right]$.
6. Fill in the blank:

If $\mathbf{X}(z)$ is the z-transform of a complex exponential signal $\exp \left[j \frac{4 \pi}{5} n\right]$ then $\mathbf{X}(-z)$ is the z -transform of the signal _---.
(a) $\exp \left[j \frac{-\pi}{5} n\right]$
(b) $\exp \left[j \frac{\pi}{5} n\right]$
(c) $\exp \left[j \frac{-\pi}{5} n\right]+\exp \left[j \frac{4 \pi}{5} n\right]$
(d) $\exp \left[j \frac{-\pi}{5} n\right]-\exp \left[j \frac{4 \pi}{5} n\right]$

Ans: $\exp \left[j \frac{-\pi}{5} n\right]$ Solution: $\mathbf{X}(-\mathbf{z})=\mathbf{X}\left(e^{j \pi} \mathbf{z}\right)$. Hence, when we put $\mathbf{z}=e^{j \omega}$ to obtain the Frequency Response, we see that it corresponds to a shift along the axis by π. Hence a component at $\frac{4 \pi}{5}$ goes to $\frac{-\pi}{5}$.
One can also see this by seeing that each term in the Fourier series summation, namely: $x[n] e^{j \omega n+j \pi}=x[n] e^{j \pi} e^{j \omega n}=e^{\frac{9 \pi}{5}} e^{j \omega}$.
7. Fill in the blank:

If $\mathbf{X}(z)$ is the z-transform of a highpass signal, then $\mathbf{X}(-z)$ is the z transform of a ---- signal.
(a) Highpass
(b) Lowpass
(c) Bandpass
(d) Bandstop

Ans: Lowpass Solution: $\mathbf{X}(-\mathbf{z})=\mathbf{X}\left(e^{j \pi} \mathbf{z}\right)$. Hence, when we put $\mathbf{z}=e^{j \omega}$ to obtain the Frequency Response, we see that it corresponds to a shift along the axis by π. Hence those components which were at high frequency get shifted to low frequencies and vice versa. Hence the highpass signal becomes lowpass.
8. In a general two channel filter bank, when the input is $\mathbf{X}(z)$, the expression of the output can be \qquad

(a) $\mathbf{A}(z) \mathbf{X}(z)$
(b) $\mathbf{A}(z) \mathbf{X}(z)+\mathbf{B}(z) \mathbf{X}(-z)$
(c) $\mathbf{A}(z) \mathbf{X}(z)+\mathbf{B}(z) \mathbf{X}(-z)+\mathbf{C}(z) \mathbf{X}\left(z^{-1}\right)$

Ans: $\mathbf{A}(\mathbf{z}) \mathbf{X}(\mathbf{z})+\mathbf{B}(\mathbf{z}) \mathbf{X}(-\mathbf{z})$ Solution: Answer is in the lectures themselves. We see that an alias component corresponding to $\mathbf{X}(-z)$ is created but no component corresponding to $\mathbf{X}\left(z^{-1}\right)$ is.
9. Of the four filter banks presented below as $\left[\mathbf{H}_{0}(z) \mathbf{H}_{1}(z) \mathbf{G}_{0}(z) \mathbf{G}_{1}(z)\right]$, which is a Perfect Reconstruction Filter Bank (PRFB)?

(a) $1+z^{-1}, 1+z^{-1},-z^{-1}, 1-z^{-1}$
(b) $1-z^{-1}, 1+z^{-1},-z^{-1}, 1-z^{-1}$
(c) $1-z^{-1}, 1+z^{-1},-1+z^{-1}, 1+z^{-1}$
(d) $1+z^{-1}, 1+z^{-1},-z^{-1},-z^{-1}$

Ans: $1-z^{-1}, 1+z^{-1},-1+z^{-1}, 1+z^{-1}$ Solution: The following conditions must be satisfied.
$\mathbf{H}_{0}(-z) \mathbf{G}_{0}(\mathbf{z})+\mathbf{H}_{1}(-\mathbf{z}) \mathbf{G}_{1}(\mathbf{z})=0$
$\mathbf{H}_{0}(\mathbf{z}) \mathbf{G}_{0}(\mathbf{z})+\mathbf{H}_{1}(\mathbf{z}) \mathbf{G}_{1}(\mathbf{z})=c z^{-n_{0}}$
Hence we see that only C works.
10. If all the filters in a Perfect Reconstruction Filter Bank (PRFB) $[\mathbf{Y}(z)=$ $\left.c z^{-n_{0}} \mathbf{X}(z)\right]$ are anti-causal, then:
(a) $n_{0} \in \mathbb{N}$
(b) $n_{0} \in \mathbb{Z}$
(c) $n_{0} \in \mathbb{Z} \backslash \mathbb{N}$
(d) $n_{0} \in \mathbb{R}$

Ans: $n_{0} \in \mathbb{Z} \backslash \mathbb{N}$ Solution: If all the filters are anti-causal, their z-transforms will only contain positive powers of z. Since neither the upsamplers nor the downsamplers can change the sign of the powers of z in the z -transform, the output transfer function of the singal component can only contain positive powers of z. Hence the answer is $n_{0} \in \mathbb{Z} \backslash \mathbb{N}$.
11. The four filters in the Haar Filter Bank are localized in \qquad but spread out in \qquad
(a) time, frequency
(b) frequency, time
(c) Both of the above
(d) None of the above

Ans: time, frequency Solution: Can be seen easily.
12. We know that the first filter on the second channel of the Haar filter bank $\left(\frac{1-z^{-1}}{2}\right)$ reduces the degree of polynomials by 1 . What does this filter do to $\cos \left[\omega_{0} n\right]$?
(a) $-\sin \left[\frac{\omega_{0}}{2}\right] \sin \left[\omega_{0} n-\frac{\omega_{0}}{2}\right]$
(b) $-\cos \left[\frac{\omega_{0}}{2}\right] \sin \left[\omega_{0} n-\frac{\omega_{0}}{2}\right]$
(c) $\sin \left[\omega_{0} n-\frac{\omega_{0}}{2}\right]$
(d) $\sin \left[\omega_{0} n\right]$

Ans: $-\sin \left[\frac{\omega_{0}}{2}\right] \sin \left[\omega_{0} n-\frac{\omega_{0}}{2}\right]$. Hence we get a sinusoid from a cosine. Solution: Output is $\frac{\cos \left[\omega_{0} n\right]-\cos \left[\omega_{0} n-\omega_{0}\right]}{2}$. Using $\cos (C)-\cos (D)=2 \sin \left(\frac{C+D}{2}\right) \sin \left(\frac{D-C}{2}\right)$, obtain the answer.
Answer the next 4 questions on the basis of the filter bank shown here, given the following expressions for
$\mathbf{H}_{0}(z)=1+z^{-1}$
$\mathbf{H}_{1}(z)=1-z^{-1}$
$\mathbf{G}_{0}(z)=z^{-1}$
13. Give an expression for $\mathbf{G}_{1}(z)$ that will ensure alias cancellation.
(a) $\frac{\left(1-z^{-1}\right)}{1+z^{-1}}$
(b) $\frac{-z^{-2}\left(1-z^{-1}\right)}{1+z^{-1}}$
(c) $\frac{-z^{-1}\left(1-z^{-1}\right)}{1+z^{-1}}$
(d) $\frac{z^{-1}\left(1+z^{2}\right)}{1+z^{-1}}$

Ans: $\frac{-z^{-1}\left(1-z^{-1}\right)}{1+z^{-1}}$ Solution: For alias cancellation, we need $\mathbf{H}_{0}(-\mathbf{z}) \mathbf{G}_{0}(\mathbf{z})$ $+\mathbf{H}_{1}(-\mathbf{z}) \mathbf{G}_{1}(\mathbf{z})=0$. Using this, we obtain the answer.
14. Give an expression for $\mathbf{G}_{1}(z)$ that will leave ONLY the aliasing term in the output.
(a) $\frac{\left(1-z^{-1}\right)}{1+z^{-1}}$
(b) $\frac{-z^{-1}\left(1+z^{-1}\right)}{1-z^{-1}}$
(c) $\frac{-z^{-1}\left(1+z^{-1}\right)}{1+z^{-1}}$
(d) $\frac{z^{-1}\left(1+z^{-2}\right)}{1+z^{-1}}$

Ans: $\frac{-z^{-1}\left(1+z^{-1}\right)}{1-z^{-1}}$ Solution: For just the alias component, we need to cancel the non-aliased component. Hence, $\mathbf{H}_{0}(\mathbf{z}) \mathbf{G}_{0}(\mathbf{z})+\mathbf{H}_{1}(\mathbf{z}) \mathbf{G}_{1}(\mathbf{z})=$ 0 . Using this, we obtain the answer.
15. In the filter bank shown above, $\mathbf{H}_{0}(z)$ acts as a \qquad filter.
(a) Highpass
(b) Lowpass
(c) Bandpass
(d) Bandstop

Ans: Low pass Solution: $1+z^{-1}$ has a zero at $\omega=\pi$. We can also see that the magnitude response is a cosine. Hence it is low pass.
16. In the filter bank shown above, $\mathbf{H}_{1}(z)$ acts as a \qquad filter.
(a) Highpass
(b) Lowpass
(c) Bandpass
(d) Bandstop

Ans: High pass Solution: $1-z^{-1}$ has a zero at $\omega=0$. We can also see that the magnitude response is a sine. Hence it is high pass.

