Fundamentals of Wavelets, Filter Banks and Time Frequency Analysis

Week 4 Assignment

March 24, 2017

- 1. If $\mathbf{X}(\mathbf{z})$ is passed through
 - a) An M-fold decimator followed by an M-fold expander.

b) An M-fold expander followed by an M-fold decimator.

The outputs from a) and b) will

- (a) be identical
- (b) be identical up to a sign
- (c) be such that b) is M times a)
- (d) None of the above

Ans: D Solution: An expander followed by a decimator gives back the original signal, but a decimator followed by an expander contains aliased components. Hence they cannot be identical.

- 2. If $\mathbf{X}(z)$ is passed through a filter with Transfer Function $\mathbf{H}(z)$, followed by a two-fold decimator, followed by a filter with Transfer Function $\mathbf{G}(z)$, the output is _____.
 - (a) $\frac{\mathbf{G}(z)}{2} [\mathbf{H}(z^{\frac{1}{2}})\mathbf{X}(z^{\frac{1}{2}}) + \mathbf{H}(z^{\frac{-1}{2}})\mathbf{X}(z^{\frac{-1}{2}})]$
 - (b) $\frac{\mathbf{H}(z)}{2} [\mathbf{G}(z^{\frac{1}{2}})\mathbf{X}(z^{\frac{1}{2}}) + \mathbf{G}(z^{\frac{-1}{2}})\mathbf{X}(z^{\frac{-1}{2}})]$
 - (c) $\frac{\mathbf{G}(z)}{2} [\mathbf{H}(z^{\frac{1}{2}})\mathbf{X}(z^{\frac{1}{2}}) + \mathbf{H}(-z^{\frac{1}{2}})\mathbf{X}(-z^{\frac{1}{2}})]$
 - (d) $\frac{\mathbf{H}(z)}{2} [\mathbf{G}(z^{\frac{1}{2}}) \mathbf{X}(z^{\frac{1}{2}}) + \mathbf{G}(-z^{\frac{1}{2}}) \mathbf{X}(-z^{\frac{1}{2}})]$

Ans: C Solution: The expression for the z-transform of the output when $\mathbf{X}(\mathbf{z})$ is passed through a twofold decimator is $\mathbf{X}(z^{\frac{1}{2}}) + \mathbf{X}(-z^{\frac{1}{2}})$. We can use this to derive the answer shown above.

3. Consider the standard two channel filter bank with analysis (synthesis) filters $\mathbf{H}_0(z)(\mathbf{G}_0(z))$ and $\mathbf{H}_1(z)(\mathbf{G}_1(z))$.

Give an expression for the z-transform of the signal in the upper branch just after the upsampler.

- (a) $\frac{1}{2} [\mathbf{X}(z) \mathbf{H}_0(z^{-1}) + \mathbf{X}(z^{-1}) \mathbf{H}_0(z)]$
- (b) $\frac{1}{2} [\mathbf{X}(z) \mathbf{H}_0(z) + \mathbf{X}(z^{-1}) \mathbf{H}_0(z^{-1})]$
- (c) $\frac{1}{2} [\mathbf{X}(-z)\mathbf{H}_0(z) + \mathbf{X}(z)\mathbf{H}_0(-z)]$
- (d) $\frac{1}{2} [\mathbf{X}(z) \mathbf{H}_0(z) + \mathbf{X}(-z) \mathbf{H}_0(-z)]$

Ans: D Solution: The expression for the z-transform of the output when $\mathbf{X}(\mathbf{z})$ is passed through a twofold decimator is $\mathbf{X}(z^{\frac{1}{2}}) + \mathbf{X}(-z^{\frac{1}{2}})$. The expression for the z-transform of the output when $\mathbf{X}(\mathbf{z})$ is passed through a twofold expander is $\mathbf{X}(z^2)$.

We can use these to derive the answer shown above.

- 4. Give the expression for the output if $\mathbf{X}(z)$ is passed through a 3-fold upsampler.
 - (a) **X** $(\frac{z}{3})$
 - (b) X(3z)
 - (c) **X** (z^3)
 - (d) **X** (z^{-3})

Ans: C Solution: If y[n] = x[n/3] when n is a multiple of 3, y[n] = 0 otherwise. $\mathbf{Y}(\mathbf{z}) = \sum_{n=-\inf}^{\inf} x[n] z^{-3n} = \mathbf{X}(z^3)$.

- 5. Give the expression for the output if $\mathbf{X}(z)$ is passed through a 3-fold downsampler. Where $\omega = e^{j\frac{2\pi}{3}}$
 - (a) $\frac{1}{3} [\mathbf{X}(z) + \mathbf{X}(\omega z) + \mathbf{X}(\omega^2 z)]$
 - (b) $\frac{1}{3} [\mathbf{X}(z^{\frac{1}{3}}) + \mathbf{X}(\omega z^{\frac{1}{3}}) + \mathbf{X}(\omega^2 z^{\frac{1}{3}})]$
 - (c) $\frac{1}{3} [\mathbf{X}(z) + \mathbf{X}(3z) + \mathbf{X}(\frac{z}{3})]$
 - (d) $\frac{1}{3} [\mathbf{X}(z) + \mathbf{X}(z\omega^{\frac{1}{3}}) + \mathbf{X}(z\omega^{\frac{2}{3}})]$

Ans: B Solution: Refer Proof of 4.1.4 from Multirate Systems and Filter Banks by P.P Vaidyanathan. The intuition one can use to solve this question is by using the 2-fold downsampler. In a 2-fold downsampler, the output is $\mathbf{X}(z^{\frac{1}{2}}) + \mathbf{X}(-z^{\frac{1}{2}})$, as we know. This can be interpreted as summing together expanded and shifted versions of the original spectra where the expansion is by a factor of 2 and the shift is by $\frac{\pi}{2}$. Hence there are 2 terms. Hence for a threefold downsampler, we would expect to sum expanded and shifted versions of the original spectra where the expansion is by a factor of 3 and the shift is by $\frac{\pi}{3}$. Hence there will be 3 terms. A shift by $\frac{\pi}{n}$ can be represented by multiplying the argument by the n-th root of unity. Hence the answer must be $\frac{1}{3}[\mathbf{X}(z^{\frac{1}{3}}) + \mathbf{X}(\omega z^{\frac{1}{3}}) + \mathbf{X}(\omega^2 z^{\frac{1}{3}})]$.

6. Fill in the blank:

If $\mathbf{X}(z)$ is the z-transform of a complex exponential signal $exp[j\frac{4\pi}{5}n]$ then $\mathbf{X}(-z)$ is the z-transform of the signal

- (a) $exp[j\frac{-\pi}{5}n]$
- (b) $exp[j\frac{\pi}{5}n]$
- (c) $exp[j\frac{-\pi}{5}n] + exp[j\frac{4\pi}{5}n]$
- (d) $exp[j\frac{-\pi}{5}n] exp[j\frac{4\pi}{5}n]$

Ans: $exp[j\frac{-\pi}{5}n]$ Solution: $\mathbf{X}(-\mathbf{z}) = \mathbf{X}(e^{j\pi}\mathbf{z})$. Hence, when we put $\mathbf{z} = e^{j\omega}$ to obtain the Frequency Response, we see that it corresponds to a shift along the axis by π . Hence a component at $\frac{4\pi}{5}$ goes to $\frac{-\pi}{5}$.

One can also see this by seeing that each term in the Fourier series summation, namely: $x[n]e^{j\omega n+j\pi} = x[n]e^{j\pi}e^{j\omega n} = e^{\frac{9\pi}{5}}e^{j\omega}$.

7. Fill in the blank:

If $\mathbf{X}(z)$ is the z-transform of a highpass signal, then $\mathbf{X}(-z)$ is the z-transform of a _____ signal.

- (a) Highpass
- (b) Lowpass
- (c) Bandpass
- (d) Bandstop

Ans: Lowpass Solution: $\mathbf{X}(\mathbf{z}) = \mathbf{X}(e^{j\pi}\mathbf{z})$. Hence, when we put $z = e^{j\omega}$ to obtain the Frequency Response, we see that it corresponds to a shift along the axis by π . Hence those components which were at high frequency get shifted to low frequencies and vice versa. Hence the highpass signal becomes lowpass.

8. In a general two channel filter bank, when the input is $\mathbf{X}(z)$, the expression of the output can be _____.

- (a) $\mathbf{A}(z)\mathbf{X}(z)$
- (b) $\mathbf{A}(z)\mathbf{X}(z) + \mathbf{B}(z)\mathbf{X}(-z)$
- (c) $\mathbf{A}(z)\mathbf{X}(z) + \mathbf{B}(z)\mathbf{X}(-z) + \mathbf{C}(z)\mathbf{X}(z^{-1})$

Ans: $\mathbf{A}(\mathbf{z})\mathbf{X}(\mathbf{z}) + \mathbf{B}(\mathbf{z})\mathbf{X}(\mathbf{z})$ Solution: Answer is in the lectures themselves. We see that an alias component corresponding to $\mathbf{X}(-z)$ is created but no component corresponding to $\mathbf{X}(z^{-1})$ is.

9. Of the four filter banks presented below as $[\mathbf{H}_0(z)\mathbf{H}_1(z)\mathbf{G}_0(z)\mathbf{G}_1(z)]$, which is a Perfect Reconstruction Filter Bank (PRFB)?

- (a) $1 + z^{-1}, 1 + z^{-1}, -z^{-1}, 1 z^{-1}$
- (b) $1 z^{-1}, 1 + z^{-1}, -z^{-1}, 1 z^{-1}$
- (c) $1 z^{-1}, 1 + z^{-1}, -1 + z^{-1}, 1 + z^{-1}$
- (d) $1 + z^{-1}, 1 + z^{-1}, -z^{-1}, -z^{-1}$

Ans: $1-z^{-1}, 1+z^{-1}, -1+z^{-1}, 1+z^{-1}$ Solution: The following conditions must be satisfied.

$$\mathbf{H}_0(-\mathbf{z})\mathbf{G}_0(\mathbf{z}) + \mathbf{H}_1(-\mathbf{z})\mathbf{G}_1(\mathbf{z}) = 0$$

 $\mathbf{H}_0(\mathbf{z})\mathbf{G}_0(\mathbf{z}) + \mathbf{H}_1(\mathbf{z})\mathbf{G}_1(\mathbf{z}) = cz^{-n_0}$

Hence we see that only C works.

- 10. If all the filters in a Perfect Reconstruction Filter Bank (PRFB) $[\mathbf{Y}(z) = cz^{-n_0}\mathbf{X}(z)]$ are anti-causal, then:
 - (a) $n_0 \in \mathbb{N}$
 - (b) $n_0 \in \mathbb{Z}$
 - (c) $n_0 \in \mathbb{Z} \setminus \mathbb{N}$
 - (d) $n_0 \in \mathbb{R}$

Ans: $n_0 \in \mathbb{Z} \setminus \mathbb{N}$ Solution: If all the filters are anti-causal, their z-transforms will only contain positive powers of z. Since neither the upsamplers nor the downsamplers can change the sign of the powers of z in the z-transform, the output transfer function of the singal component can only contain positive powers of z. Hence the answer is $n_0 \in \mathbb{Z} \setminus \mathbb{N}$.

- 11. The four filters in the Haar Filter Bank are localized in ____ but spread out in ____.
 - (a) time, frequency
 - (b) frequency, time
 - (c) Both of the above
 - (d) None of the above

Ans: time, frequency Solution: Can be seen easily.

12. We know that the first filter on the second channel of the Haar filter bank $(\frac{1-z^{-1}}{2})$ reduces the degree of polynomials by 1. What does this filter do to $\cos[\omega_0 n]$?

(a)
$$-\sin\left[\frac{\omega_0}{2}\right]\sin\left[\omega_0 n - \frac{\omega_0}{2}\right]$$

- (b) $-\cos\left[\frac{\omega_0}{2}\right]\sin\left[\omega_0 n \frac{\omega_0}{2}\right]$
- (c) $sin[\omega_0 n \frac{\omega_0}{2}]$
- (d) $sin[\omega_0 n]$

Ans: $-\sin\left[\frac{\omega_0}{2}\right]\sin\left[\omega_0n-\frac{\omega_0}{2}\right]$. Hence we get a sinusoid from a cosine. Solution: Output is $\frac{\cos\left[\omega_0n\right]-\cos\left[\omega_0n-\omega_0\right]}{2}$. Using $\cos(C)-\cos(D) = 2\sin\left(\frac{C+D}{2}\right)\sin\left(\frac{D-C}{2}\right)$, obtain the answer.

Answer the next 4 questions on the basis of the filter bank shown here, given the following expressions for

$$\begin{aligned} \mathbf{H}_{0}(z) &= 1 + z^{-1} \\ \mathbf{H}_{1}(z) &= 1 - z^{-1} \\ \mathbf{G}_{0}(z) &= z^{-1} \end{aligned}$$

13. Give an expression for $\mathbf{G}_1(z)$ that will ensure alias cancellation.

(a)
$$\frac{(1-z^{-1})}{1+z^{-1}}$$

- (b) $\frac{-z^{-2}(1-z^{-1})}{1+z^{-1}}$ (c) $\frac{-z^{-1}(1-z^{-1})}{1+z^{-1}}$ (d) $\frac{z^{-1}(1+z^2)}{1+z^{-1}}$

Ans: $\frac{-z^{-1}(1-z^{-1})}{1+z^{-1}}$ Solution: For alias cancellation, we need $\mathbf{H}_0(-\mathbf{z})\mathbf{G}_0(\mathbf{z}) + \mathbf{H}_1(-\mathbf{z})\mathbf{G}_1(\mathbf{z}) = 0$. Using this, we obtain the answer.

- 14. Give an expression for $\mathbf{G}_1(z)$ that will leave ONLY the aliasing term in the output.
 - (a) $\frac{(1-z^{-1})}{1+z^{-1}}$ (d) $\frac{1+z^{-1}}{1-z^{-1}}$ (b) $\frac{-z^{-1}(1+z^{-1})}{1-z^{-1}}$ (c) $\frac{-z^{-1}(1+z^{-1})}{1+z^{-1}}$ (d) $\frac{z^{-1}(1+z^{-2})}{1+z^{-1}}$

Ans: $\frac{-z^{-1}(1+z^{-1})}{1-z^{-1}}$ Solution: For just the alias component, we need to cancel the non-aliased component. Hence, $\mathbf{H}_0(\mathbf{z})\mathbf{G}_0(\mathbf{z}) + \mathbf{H}_1(\mathbf{z})\mathbf{G}_1(\mathbf{z}) =$ 0. Using this, we obtain the answer.

- 15. In the filter bank shown above, $\mathbf{H}_0(z)$ acts as a _____ filter.
 - (a) Highpass
 - (b) Lowpass
 - (c) Bandpass
 - (d) Bandstop

Ans: Low pass Solution: $1 + z^{-1}$ has a zero at $\omega = \pi$. We can also see that the magnitude response is a cosine. Hence it is low pass.

- 16. In the filter bank shown above, $\mathbf{H}_1(z)$ acts as a _____ filter.
 - (a) Highpass
 - (b) Lowpass
 - (c) Bandpass
 - (d) Bandstop

Ans: High pass Solution: $1 - z^{-1}$ has a zero at $\omega = 0$. We can also see that the magnitude response is a sine. Hence it is high pass.