urses » Introductio	n To Cryptology	Announcements	Course	Ask a Question	Progress		
nit 5 - Wee	ek 4						
Course outline	Week4_As	ssignment1					
How to access he portal?	The due date for submitting this assignment has passed. Due on 2017-08-23, 23:59 IST As per our records you have not submitted this assignment.						
Week 1	¹⁾ Let (X, Y, K, H) be the hash functions in this f	ne hash family with X = 2 ²⁵⁶ amily is	and Y = 2 ³² .	Then the number of al	l possible 1 po		
Week 2	2 ²⁴⁰						
Week 3	$2^{2^{261}}$ $2^{2^{261}}$						
Week 4	2 ⁴⁰						
 Lecture 1: Cryptographic Hash Functions 	No, the answer is i Score: 0	ncorrect.					
Lecture 2: Random Oracle	Accepted Answers 2 ^{2²⁶¹}	s:					
Lecture 3: Randomized Algorithm	²⁾ Assume random oracle model. Suppose that $h \in F^{(X,Y)}$ is chosen randomly, and let $X_0 \subseteq X$. 1 po Suppose that the values $h(x)$ have been determined (by querying the oracle for h) if and only if $x \in X_0$ Let $ X =N$ and $ Y =M$, $N \ge 2M$. Then chose the correct statement.						
Lecture 4: Iterated Construction of Hash Functions	$\label{eq:prime} \begin{array}{ c c } & \Pr[h(x)=y]=1/M \text{ for all } x\in X\setminus X_0 \text{ and all } y\in Y \ . \\ & \Pr[h(x)=y]=1/N \text{ for all } x\in X\setminus X_0 \text{ and all } y\in Y \ . \\ & \Pr[h(x)=y]=1/M- X_0 \text{ for all } x\in X\setminus X_0 \text{ and all } y\in Y \ . \\ & \Pr[h(x)=y]=1/N- X_0 \text{ for all } x\in X\setminus X_0 \text{ and all } y\in Y \ . \end{array}$						
C Lecture 5: Problem							
Quiz : Week4_Assignment1	No, the answer is incorrect. Score: 0						
Feedback form for Week-4	Accepted Answers: $Pr[h(x)=y]=1/M$ for all $x \in X \setminus X_0$ and all $y \in Y$.						
 Assignment Solution 	3) Let (X, Y, K, H) be a ϵ be the average-case	hash family with Y = 4096 success probability for findi	and $X_0 \subset X$ sund $X_0 \subset X$ sund $X_0 \subset X$ sund $X_0 \subset X$ such as $X_0 \subset X_0$.	ich that X ₀ = 32. Supp Then the best estir	ose that $1 pc$ mate of ϵ is		
	2 -12						
	2 -17						
	2 -3 2 -7						
	- No, the answer is i	incorrect.					

Introduction To Cryptology - - Unit 5 - Week 4

4) Let a compression hash function be collision resistant. Then the hash 1 point function constructed by Merkle-Damdård algorithm

\bigcirc	is	col	lision	resist	ant.

- is not collision resistant.
- may or may not be collision resistant.
- none of them.

No. the answer is incorrect. Score: 0

Accepted Answers: is collision resistant.

f V 1 patron in ⁵⁾ Suppose that n = m > 1 and $h : \mathbb{Z}_{2^m} \to \mathbb{Z}_{2^m}$ is defined by $h(x) = x^2 + ax + b \mod 2^m$. Then second preimage

- can be found only by solving a quadratic equation.
- cannot be found.
- can be found by without solving a quadratic equation.
- Sometimes can be found by solving a linear equation but not always.

No. the answer is incorrect.

Score: 0

Accepted Answers:

can be found by without solving a quadratic equation.

6) Suppose that h: $X \rightarrow Y$ is a hash function such that it is possible to find x, $x' \in X$ with $x \neq X$ 1 point x' such that h(x) = h(x'). Then

- h is not preimage resistant.
- h is not second preimage resistant.
- h is not collision resistant but may or may not be second preimage resistant.
- h is not collision resistant and not second preimage resistant.

No, the answer is incorrect.

Score: 0

Accepted Answers:

h is not collision resistant but may or may not be second preimage resistant.

7) Find the correct statement among the following.

- If a hash function is collision resistant then it is preimage resistant.
- If a hash function is second preimage resistant then it is collision resistant.
- If a hash function is collision resistant then it is second preimage resistant.
- If a hash function is preimage resistant then it is second preimage resistant.

No, the answer is incorrect.

Score: 0

Accepted Answers:

If a hash function is collision resistant then it is second preimage resistant.

8) Suppose that $h: X \rightarrow Y$ is a hash function considered in random oracle model. Suppose that Q1 point queries are allowed and Q is small compared to M=|Y|. Then the best estimate of the average case success probability of find-second-preimage algorithm is

Q/M Q / (M-1) (Q-1) / (M-1) (Q-1) / M

No, the answer is incorrect. Score: 0

Accepted Answers: (Q-1) / M

1 point

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

In association with

Funded by

Government of India Ministry of Human Resource Development

Powered by

