Unit 5 - Week 4

Course outline

How to access the portal?

Week 1

Week 2

Week 3

Week 4

Lecture 1: Cryptographic Hash Functions

Lecture 2 Random Oracle Model

Lecture 3: Randomized Algorithm

Lecture 4: Iterated Construction of Hash Functions

Lecture 5:
Problem Discussions

Quiz :
Week4_Assignment1
Feedback form for Week-4

Assignment Solution

Week4_Assignment1

The due date for submitting this assignment has passed. Due on 2017-08-23, 23:59 IS As per our records you have not submitted this assignment.

1) Let (X, Y, K, H) be the hash family with $|X|=2^{256}$ and $|Y|=2^{32}$. Then the number of all possible 1 point hash functions in this family is

- $2^{2^{40}}$
$2^{2^{261}}$
2^{261}
2^{40}
No, the answer is incorrect.
Score: 0
Accepted Answers:
$2^{2^{261}}$
${ }^{2)}$ Assume random oracle model. Suppose that $h \in F^{(X, Y)}$ is chosen randomly, and let $X_{0} \subseteq X$. 1 point Suppose that the values $h(x)$ have been determined (by querying the oracle for h) if and only if $x \in$ X_{0} Let $|X|=N$ and $|Y|=M, N \geq 2 M$. Then chose the correct statement.
$\operatorname{Pr}[h(x)=y]=1 / M$ for all $x \in X \mid X_{0}$ and all $y \in Y$.
$\operatorname{Pr}[h(x)=y]=1 / N$ for all $x \in X I X 0$ and all $y \in Y$.
$\operatorname{Pr}[h(x)=y]=1 / M-\left|X_{0}\right|$ for all $x \in X \mid X_{0}$ and all $y \in Y$.
$\operatorname{Pr}[h(x)=y]=1 / N-|X 0|$ for all $x \in X \mid X 0$ and all $y \in Y$.
No, the answer is incorrect.
Score: 0
Accepted Answers:
$\operatorname{Pr}[h(x)=y]=1 / M$ for all $x \in X \mid X_{0}$ and all $y \in Y$.

3) Let (X, Y, K, H) be a hash family with $|Y|=4096$ and $X_{0} \subset X$ such that $\left|X_{0}\right|=32$. Suppose that 1 point ϵ be the average-case success probability for finding preimage. Then the best estimate of ϵ is
2^{-12}
2-17
2-5
2-7
No, the answer is incorrect.
Score: 0
Accepted Answers:
2^{-7}
4) Let a compression hash function be collision resistant. Then the hash 1 point function constructed by Merkle-Damdård algorithm
is collision resistant.is not collision resistant.may or may not be collision resistant.
none of them.
No, the answer is incorrect.
Score: 0
Accepted Answers:
is collision resistant.
5) Suppose that $n=m>1$ and $h: Z_{2^{m}} \rightarrow Z_{2^{m}}$ is defined by $h(x)=x^{2}+a x+b \bmod 2^{m}$. Then second preimage
can be found only by solving a quadratic equation.
cannot be found.
can be found by without solving a quadratic equation.
Sometimes can be found by solving a linear equation but not always.
No, the answer is incorrect.
Score: 0
Accepted Answers:
can be found by without solving a quadratic equation.
6) Suppose that $h: X \rightarrow Y$ is a hash function such that it is possible to find $x, x^{\prime} \in X$ with $x \neq$ x^{\prime} such that $h(x)=h\left(x^{\prime}\right)$. Then
h is not preimage resistant.
h is not second preimage resistant.
h is not collision resistant but may or may not be second preimage resistant.
h is not collision resistant and not second preimage resistant.
No, the answer is incorrect.
Score: 0

Accepted Answers:

h is not collision resistant but may or may not be second preimage resistant.
7) Find the correct statement among the following.

If a hash function is collision resistant then it is preimage resistant.
If a hash function is second preimage resistant then it is collision resistant.
If a hash function is collision resistant then it is second preimage resistant.
If a hash function is preimage resistant then it is second preimage resistant.
No, the answer is incorrect.
Score: 0

Accepted Answers:

If a hash function is collision resistant then it is second preimage resistant.
8) Suppose that $h: X \rightarrow Y$ is a hash function considered in random oracle model. Suppose that Q1 point queries are allowed and Q is small compared to $M=|Y|$. Then the best estimate of the average case success probability of find-second-preimage algorithm is

```
Q/M
Q/(M-1)
(Q-1)/(M-1)
(Q-1)/M
```

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Q-1) / M
9) Let $B=\{0,1\}$. Suppose that $f: B^{100} \rightarrow B^{50}$ is a collision resistant hash function.

Define $h: B^{200} \rightarrow B^{50}$ such that $h(x)=f\left(f\left(x^{\prime}\right) \| f\left(x^{\prime \prime}\right)\right)$ for all $x \in B^{200}$,
where $x=x^{\prime} \| x^{\prime \prime}, x^{\prime}, x^{\prime \prime} \in B^{100}$. Then
h is not collision resistant.
. h may or may not be collision resistant.
h is collision resistant.
none of them.
No, the answer is incorrect.
Score: 0
Accepted Answers:
h is collision resistant.
10Suppose you have a 40-bit message digest. Q is the smallest number of valid pairs required 1 point to obtain collision with probability 0.5 . Which one of the following with the best estimate of Q ?
2^{20}

- 2^{40}
- 2^{80}
- 2^{10}

No, the answer is incorrect.
Score: 0
Accepted Answers:
2^{20}

Previous Page

Funded by
Government of India
Ministry of Human Resource Development

Powered by
Google

