ourses » Introductio	on To Cryptology Announcements Course Ask a Question Progr	ess
Jnit 4 - Wee	ek 3	
Course outline	Week3_Assignment1	
How to access	The due date for submitting this assignment has passed. Due on 2017-08-16, 23:59 As per our records you have not submitted this assignment.	9 IST
	1) Let $c \in Z_{3750}$ such that $49^{1000} \equiv c \pmod{3750}$. Then $c =$	1 poi
Week 1	0	
Week 2	1	
Week 3	49	
O Lecture 1: Public-Key	No, the answer is incorrect.	
Cryptography Lecture 2: RSA Computation	Accepted Answers: 1	
 Lecture 3: Primality Testing-1 	2) Let $\phi(n)$ be the number of positive integers coprime to <i>n</i> and less than <i>n</i> . Then $\phi(437)$ is equal to	1 poi
Lecture 4:	 436 396 	
Testing-2	385	
C Lecture 5:	435	
Problem Discussions	No, the answer is incorrect.	
O Quiz :	Score: 0	
Week3_Assignment1	396	
Feedback form for Week-3	3) Let $n = pq$, where $p = 67$ and $q = 127$. Suppose that there exist $a \in Z_{\phi(n)}$ such that $ab \equiv 1$	1 poi
 Assignment 	mod $\phi(n)$, where $b = 41$. Then the value of a is	
Solution	0 1219	
Week 4	0 1200	
	 1218 1217 	
	No the answer is incorrect	
	Score: 0	
	Accepted Answers:	
	1217	
	4) Consider an RSA cryptosystem with $n = pq$, where $p = 13$ and $q = 29$. Let the public key be (<i>n</i> 25). Then the encrypted value of 10 is	1 poi
	114	

No, the answer is incorrect. Score: 0	
Accepted Answers:	
114	
5) Consider an RSA cryptosystem with $n = pq$, where $p = 13$ and $q = 29$. Let the public be (n , 25). Then the decrypted value of 10 is	key 1 pc
0 192	
304	
0 194	
403	
No, the answer is incorrect.	ir
Accepted Answers:	
192	8
6) Let the Legendre symbol value of (4 / 19) and (5 / 19) be r and s respectively. Then	1 point
r = 1, s = 1	
r = -1, s = -1	
r = -1, s = 1	
r = 1, s = -1	
No, the answer is incorrect. Score: 0	
Accepted Answers:	
r = 1, s = 1	
7) Suppose <i>p</i> is an odd prime and <i>a</i> is an integer such that $a^{((p-1)/2)} \equiv -1 \pmod{p}$. Then	1 point
a is a quadratic residue modulo p.	
No such <i>a</i> exists.	
<i>a</i> is a quadratic non-residue modulo <i>p</i> .	
a is coprime to p.	
No, the answer is incorrect. Score: 0	
Accepted Answers:	
a is a quadratic non-residue modulo p.	
8) The Jacobi symbol value of (145 /135) is	1 point
○ 2	
○ 0	
O -1	
◎ 1	
No, the answer is incorrect. Score: 0	
Accepted Answers:	
0	
9) The Jacobi symbol value of (149 / 255) is	1 point
0	
O 1	
O 2	
O -1	

No, the answer is incorrect.
Score: 0
Accepted Answers:

-1

Previous Page

f ⊻ ► in 8⁺

End

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

NASSCOM

Funded by

Government of India Ministry of Human Resource Development

Powered by

