		741100	ncements		ouise	AS	n a (gueo			Ugress
nit 3 - Wee	ek 2										
Course outline	Week2_As	signm	ent1								
low to access he portal?	The due date for subr As per our records yo	nitting this a ou have not s	ssignment submitted t	has p his as	assed. signme	Due o nt.	on 2	017-	08-09	9, 23	6:59 IS7
Veek 1	1) Let S_1 be a multiplication $S_1 \times S_2$. Find the cipherte	ative cipher c xt y of "JULIU	iver Z ₂₆ and JS" using the	S ₂ be e crypt	a shift c osystem	ipher c n S, wh	over 2 ere <i>k</i>	ເ ₂₆ . Su ເ ₁ = 3 ຄ	ippose and <i>k</i> 2	e that = 11	S = 1 po , is.
Veek 2	v=MTSJTM										
 Lecture 1: Product Ciphers and Block Ciphers 	y= MTSJTN y= PTSJTN y= QTSJTN										
Lecture 2: Substitution- Permutation Network and Feistel Cipher	No, the answer is inc Score: 0 Accepted Answers: y= MTSJTN	correct.									
Lecture 3: S- box Theory	2) Suppose S_1 and S_2 where $m_2 \mid m_1$. Then determine	are Vigenere ermine which	Ciphers with of the follow	n keyw ving sta	vord leng atement	th <i>m</i> 1 is corr	and r ect.	n ₂ , res	spectiv	ely,	1 po
 Lecture 4: Cryptanalysis of Block Ciphers 	$S_1 \times S_2 = S_2.$ $S_2 \times S_1 = S_1.$										
Lecture 5: Problem discussions	$S_2 \times S_1 = S_2.$ None of the abo	ove.									
from Week – 1	No, the answer is incorrect.										
Quiz: Week2 Assianment1	Accepted Answers										
Assignment Solution	$S_2 \times S_1 = S_1$			h - 41					- 4 1		
Feedback form for Week-2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{4}{3}$	x _{π(3)} , x _{π(4)})	be the	e permu	ation c	maa		HWOIK	, wrie	ne <i>i po</i>
Veek 3	and the 4×4 S-box functi	ion be	2 3 4	5 6	7 5	2 0	Δ	B (F	F
Veek 4	S	(x) 1 3	5 7 9	B D	F E	E C	A	8 6) D 3 4	0	2
	If $x = 1101$, then determine	ne the correc	t statement.						I		
	S(π(x))= 0000										
	S(π(x)) = 1110.										
	S(π(x)) = 0001										
	S(π(x)) = 1111.										

Introduction To Cryptology - - Unit 3 - Week 2

$S(\pi(x)) = 0000.$

4) Let y = 10101110 be the output of a Feistel cipher of length 8 applying one round with key k = 1 point 0110 and let the key mixing function be $f(x,k) = S(x \oplus k)$ where S is defined using following table.

- ,	. 0					-	· ·		-					5		0.0	
	х	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
	S(x)	1	3	5	7	9	В	D	F	Е	С	А	8	6	4	0	2

Which is the following input is correct?

0001 1010

0 1010 0001

0 1010 1000

0 1000 1010

No, the answer is incorrect. Score: 0

Accepted Answers: 1000 1010

⁵⁾ Let $f(x_3, x_2, x_1)$: $GF(2)^3 \rightarrow GF(2)$ be a Boolean function such that $(f(0,0,0), f(0,0,1), \dots, f(1,1,1)$ **1** point (0, 0, 0, 1, 1, 1, 1, 0). Then the algebraic normal form of *f* is

Accepted Answers:								
No, the answer is incorrect. Score: 0								
$x_1x_2 \oplus x_3x_3$	K ₄ .							
$\bigcirc x_3x_2 \oplus x_1.$								
$\bigcirc x_1x_3 \oplus x_2.$								
$ x_1 x_2 \oplus x_3. $								

 $x_1x_2 \oplus x_3$

⁶⁾ Let $f: GF(2)^3 \rightarrow GF(2)$ and $g: GF(2)^3 \rightarrow GF(2)$ be two Boolean functions such that (f(000)), $f(001), \dots, f(111) = (1, 0, 1, 0, 1, 1, 1, 1)$ and

(g(000), g(001), ..., g(111)) = (0, 1, 0, 1, 1, 0, 1, 1). Then the Hamming weight between two functions f and g is

4
5
3
6
No, the answer is incorrect.
Score: 0

Accepted Answers:

5

⁷⁾ Let $f: GF(2)^2 \rightarrow GF(2)$ be a Boolean function such that $f(x_1, x_2) = x_1x_2 \oplus x_1$. Suppose that nl(f) **1** point be the nonlinearity of *f* and d(f) be the maximum distance from all affine functions of 2 variables. Then

nl(f) = 1, d(f) = 2
 nl(f) = 1, d(f) = 3
 nl(f) = 2, d(f) = 3
 nl(f) = 2, d(f) = 2
 No, the answer is incorrect.
 Score: 0

Accepted Answers: nl(f) = 1, d(f) = 3 f Y D in

Introduction To Cryptology - - Unit 3 - Week 2

⁸⁾ Let F: $GF(2)^2 \rightarrow GF(2)^2$ be a 2×2 S-box function such that $F(x_1, x_2) = (x_1x_2 \oplus x_1, x_1x_2 \oplus x_2)$ **1** point Then the nonlinearity of F is

No, the answer is incorrect. Score: 0

Accepted Answers:

9) Suppose that we have two plaintext and ciphertext pairs obtained from Affine cipher (8,0) and (4,14) over Z_{26} . Find the value of *a* and *b*, where k = (a,b) is a key.

a = 2, b = 3.
a = 2, b = 2.
a = 3, b = 2.
a = 3, b = 3.

No, the answer is incorrect. Score: 0

Accepted Answers: a = 3, b = 2.

¹⁰Let *F*: $GF(2)^4 \rightarrow GF(2)^3$ be a 4×3 *S*-box function of a block cipher such that $F(x_1, x_2, x_3, x_4) = 1$ point (y_1, y_2, y_3) , where $y_1 = x_1 x_2 x_3 \oplus x_3 x_4 \oplus x_1 \oplus x_2$,

 $y_2 = x_1x_2x_3 \oplus x_3x_4 \oplus x_2$ and $y_3 = x_1 \oplus x_2 \oplus x_4 \oplus 1$. We consider single round of the block cipher with key $k = (k_1, k_2, k_3, k_4)$ is xored bitwise to the plaintext bits before obtaining the output by applying *F*. Which following relations is valid?

 $k_1 = x_1 \oplus y_1 \oplus y_2 \text{ and } k_2 \oplus k_4 = 1 \oplus x_2 \oplus y_1 \oplus y_2 \oplus y_3$

 $k_1 = x_1 \oplus y_2 \text{ and } k_2 \oplus k_4 = 1 \oplus x_2 \oplus x_4 \oplus y_1 \oplus y_2 \oplus y_3$

 $k_1 = x_1 \oplus y_1 \oplus y_2 \text{ and } k_2 \oplus k_4 = 1 \oplus x_2 \oplus x_4 \oplus y_1 \oplus y_2 \oplus y_3$

 $k_1 = x_1 \oplus y_1 \oplus y_2 \text{ and } k_2 \oplus k_4 = 1 \oplus x_2 \oplus x_3 \oplus y_1 \oplus y_2 \oplus y_3$

No, the answer is incorrect. Score: 0

Accepted Answers: $k_1 = x_1 \oplus y_1 \oplus y_2$ and $k_2 \oplus k_4 = 1 \oplus x_2 \oplus x_4 \oplus y_1 \oplus y_2 \oplus y_3$

Previous Page

End

f Y 1 pc in

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -In association with (*

Introduction To Cryptology - - Unit 3 - Week 2

Funded by

Government of India

Ministry of Human Resource Development

Powered by

JP

