Unit 3 - Week 2

Course outline

How to access the portal?

Week 1

Week 2

Lecture 1
Product Ciphers and Block
Ciphers
Lecture 2
Substitution-
Permutation
Network and Feistel Cipher

Lecture 3: Sbox Theory

Lecture 4:
Cryptanalysis of
Block Ciphers
Lecture 5:
Problem discussions from Week - 1

Quiz:
Week2_Assignment1
Assignment
Solution
Feedback form for Week-2

Week 3

Week 4

Week2_Assignment1

The due date for submitting this assignment has passed. Due on 2017-08-09, 23:59 IST
As per our records you have not submitted this assignment.

1) Let S_{1} be a multiplicative cipher over Z_{26} and S_{2} be a shift cipher over Z_{26}. Suppose that $S=1$ point $S_{1} \times S_{2}$. Find the ciphertext y of "JULIUS" using the cryptosystem S, where $k_{1}=3$ and $k_{2}=11$, is.
$y=$ MTSJTM
$y=$ MTSJTN
$y=$ PTSJTN
$y=$ QTSJTN
No, the answer is incorrect.
Score: 0
Accepted Answers:
$y=$ MTSJTN
2) Suppose S_{1} and S_{2} are Vigenere Ciphers with keyword length m_{1} and m_{2}, respectively,

1 point where $m_{2} \mid m_{1}$. Then determine which of the following statement is correct.
$S_{1} \times S_{2}=S_{2}$.
$S_{2} \times S_{1}=S_{1}$
$S_{2} \times S_{1}=S_{2}$.
None of the above.
No, the answer is incorrect.
Score: 0
Accepted Answers:
$S_{2} \times S_{1}=S_{1}$.
3) Let $\pi\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{\pi(1)}, x_{\pi(2)}, x_{\pi(3)}, x_{\pi(4)}\right)$ be the permutation on a SPN network, where 1 point

i	1	2	3	4
$\pi(\mathrm{i})$	2	4	1	3

and the $4 \times 4 S$-box function be

x	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
$\mathrm{S}(\mathrm{x})$	1	3	5	7	9	B	D	F	E	C	A	8	6	4	0	2

If $x=1101$, then determine the correct statement.
$S(\pi(x))=0000$.
$S(\pi(x))=1110$.
$S(\pi(x))=0001$.
$S(\pi(x))=1111$.
No, the answer is incorrect.
Score: 0
Accepted Answers:
$S(\pi(x))=0000$.
4) Let $y=10101110$ be the output of a Feistel cipher of length 8 applying one round with key $k=1$ point 0110 and let the key mixing function be $f(x, k)=\mathrm{S}(x \oplus k)$ where S is defined using following table.

x	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
$S(x)$	1	3	5	7	9	B	D	F	E	C	A	8	6	4	0	2

Which is the following input is correct?

```
0 0 0 1 1 0 1 0
10100001
O}1010100
O}1000101
```

No, the answer is incorrect.
Score: 0
Accepted Answers:
10001010
${ }^{5)}$ Let $f\left(x_{3}, x_{2}, x_{1}\right): G F(2)^{3} \rightarrow G F(2)$ be a Boolean function such that $\left(f(0,0,0), f(0,0,1), \ldots, f(1,1,1){ }^{1}\right.$ point $)=(0,0,0,1,1,1,1,0)$.Then the algebraic normal form of f is
$x_{1} x_{2} \oplus x_{3}$.
$x_{1} x_{3} \oplus x_{2}$.
$x_{3} x_{2} \oplus x_{1}$.
$x_{1} x_{2} \oplus x_{3} x_{4}$.
No, the answer is incorrect.
Score: 0
Accepted Answers:
$x_{1} x_{2} \oplus x_{3}$.
${ }^{6)}$ Let $f: G F(2)^{3} \rightarrow G F(2)$ and $g: G F(2)^{3} \rightarrow G F(2)$ be two Boolean functions such that $(f(000), \quad 1$ point $f(001), \ldots, f(111))=(1,0,1,0,1,1,1,1)$ and $(g(000), g(001), \ldots, g(111))=(0,1,0,1,1,0,1,1)$. Then the Hamming weight between two functions f and g is

5
3
6
No, the answer is incorrect.
Score: 0

Accepted Answers:

5
7) Let f : $G F(2)^{2} \rightarrow G F(2)$ be a Boolean function such that $f\left(x_{1}, x_{2}\right)=x_{1} x_{2} \oplus x_{1}$. Suppose that $n l(f){ }^{1}$ point be the nonlinearity of f and $d(f)$ be the maximum distance from all affine functions of 2 variables. Then
$n l(f)=1, d(f)=2$
$n /(f)=1, d(f)=3$
$n l(f)=2, d(f)=3$
$n l(f)=2, d(f)=2$
No, the answer is incorrect.
Score: 0

Accepted Answers:

$n l(f)=1, d(f)=3$
${ }^{8)}$ Let $F: G F(2)^{2} \rightarrow G F(2)^{2}$ be a $2 \times 2 S$-box function such that $F\left(x_{1}, x_{2}\right)=\left(x_{1} x_{2} \oplus x_{1}, x_{1} x_{2} \oplus x_{2}\right)$
Then the nonlinearity of F is

- 1
- 3
- 2

0
No, the answer is incorrect.
Score: 0
Accepted Answers:
0
9) Suppose that we have two plaintext and ciphertext pairs obtained from Affine cipher $(8,0)$ and $(4,14)$ over Z_{26}. Find the value of a and b, where $k=(a, b)$ is a key.
$a=2, b=3$.
$a=2, b=2$.
$a=3, b=2$
$a=3, b=3$.
No, the answer is incorrect.
Score: 0
Accepted Answers:
$a=3, b=2$.
${ }^{10}$ Let F : $G F(2)^{4} \rightarrow G F(2)^{3}$ be a $4 \times 3 S$-box function of a block cipher such that $F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=$ $\left(y_{1}, y_{2}, y_{3}\right)$, where $y_{1}=x_{1} x_{2} x_{3} \oplus x_{3} x_{4} \oplus x_{1} \oplus x_{2}$,
$y_{2}=x_{1} x_{2} x_{3} \oplus x_{3} x_{4} \oplus x_{2}$ and $y_{3}=x_{1} \oplus x_{2} \oplus x_{4} \oplus 1$. We consider single round of the block cipher with key $k=\left(k_{1}, k_{2}, k_{3}, k_{4}\right)$ is xored bitwise to the plaintext bits before obtaining the output by applying F. Which following relations is valid?
$k_{1}=x_{1} \oplus y_{1} \oplus y_{2}$ and $k_{2} \oplus k_{4}=1 \oplus x_{2} \oplus y_{1} \oplus y_{2} \oplus y_{3}$
$k_{1}=x_{1} \oplus y_{2}$ and $k_{2} \oplus k_{4}=1 \oplus x_{2} \oplus x_{4} \oplus y_{1} \oplus y_{2} \oplus y_{3}$
$k_{1}=x_{1} \oplus y_{1} \oplus y_{2}$ and $k_{2} \oplus k_{4}=1 \oplus x_{2} \oplus x_{4} \oplus y_{1} \oplus y_{2} \oplus y_{3}$
$k_{1}=x_{1} \oplus y_{1} \oplus y_{2}$ and $k_{2} \oplus k_{4}=1 \oplus x_{2} \oplus x_{3} \oplus y_{1} \oplus y_{2} \oplus y_{3}$
No, the answer is incorrect.
Score: 0
Accepted Answers:
$k_{1}=x_{1} \oplus y_{1} \oplus y_{2}$ and $k_{2} \oplus k_{4}=1 \oplus x_{2} \oplus x_{4} \oplus y_{1} \oplus y_{2} \oplus y_{3}$

Previous Page

Funded by
Government of India Ministry of Human Resource Development

Powered by

