ourses » Introducti	on To Cryptology	Announcements	Course	Ask a Question	Progress
Jnit 2 - We	ek 1				
Course outline	Week1_As	ssignment1			
How to access the portal?	As per our records	bmitting this assignment h you have not submitted th	is assignmen	t.	
Week 1	such that $e_k (0)=1$, e_k	1,2,3,4} and for a random ke (1)=2, e_k (2)=4 and e_k (0)=2			
 Lecture 1: Introduction, Caesar cipher 	statement. \bigcirc e _k and e _k ' bot	th are encryption functions.			
Lecture 2: Modular		ption function but e_k ' is not. yption function but e_k is not.			
Arithmetic, Shift Cipher		th are not an encryption func	tions.		
Classical Ciphers: Affine	No, the answer is i Score: 0 Accepted Answers				
Cipher and Vigenère Cipher	•	encryption functions.			
Lecture 4: Perfect secrecy and Application	2) Which is correc	t? = 1 and (-47) ⁻¹ <i>mod</i> 16 = 1.			1 pc
on Shift Cipher Lecture 5: Problem	-47 mod 16 = 1, but $(-47)^{-1}$ mod 16 does not exist. -47 mod 16 = 15, but $(-47)^{-1}$ mod 16= 15.				
Discussion on Affine Cipher and Perfect	• -47 mod 16 = 15 and $(-47)^{-1}$ mod 16 = 1. No, the answer is incorrect.				
secrecy	Score: 0				
Quiz : Week1_Assignment1	-47 mod 16 = 1 and	s: d (-47) ⁻¹ mod 16 = 1.			
 Assignment Solutions 	3) Let $gcd(66,255) = d$ and there exist $r, s \in Z$ such that $255r + 66s = d$. Pick the correct value of 1 por r, s and d .				
 Feedback form for Week-1 	○ <i>r</i> = -7, <i>s</i> = 27	and <i>d</i> = 3.			
Week 2	r = 7, s = 27 and d = 3. $r = 7, s = -27 and d = 3.$				
Week 3	r = -7, s = -27				
Week 4	No, the answer is i Score: 0	incorrect.			
	Accepted Answers r = 7, $s = -27$ and d	s:			

Cipher: $\mathscr{P} = \mathscr{C} = \mathbb{Z}_{20}^4 = \mathscr{K}$. Pick the correct answer.

 $r_1 = 160$ and $r_2 = 16000$.

 $r_1 = 160 \text{ and } r_2 = 160000.$

 r_1 =400 and r_2 =160000.

 $r_1 = 40$ and $r_2 = 16000$.

No, the answer is incorrect. Score: 0

Accepted Answers: r1 =160 and r2 =160000.

f V 1 pc in 5) Consider a shift cipher with $P = C = Z_{26} = K$. Suppose that "X" is encrypted to "D". Then the encryption of "IAMAGOODBOY" is

- OGSGMUUJNUE
- OGSGQUUJNUE
- OGSGMUUJHUE
- OGSGMUUJNUF

No, the answer is incorrect. Score: 0

Accepted Answers: OGSGMUUJHUE

6) Consider an affine cipher, where $P = C = Z_{16}$ and $K = \{(a,b) \in Z_{16} \times Z_{16} : gcd(a,16) = 1\}$. If **1** point k = (15,2), then

 $e_k(7) = 11$ and $d_k(7) = 11$. $e_k(7) = 11$ and $d_k(11) = 11$. • $e_k(7) = 7$ and $d_k(7) = 11$. • $e_k(7) = 7$ and $d_k(11) = 11$.

No, the answer is incorrect. Score: 0

Accepted Answers: $e_k(7) = 11$ and $d_k(7) = 11$.

7) If an encryption function e_k is identical to the decryption function d_k , then k is said to be an 1 point involutary key. Let the set of involutary keys in the shift cipher over Z_{26} is S_1 and in the affine cipher over Z₅ is S₂. Then

S₁ = {0} and S₂ = {(1,0), (4,0), (4,1), (4,2), (4,3), (4,4)}.

• $S_1 = \{0,13\}$ and $S_2 = \{(1,0), (4,0), (4,1), (4,2), (4,3), (4,4)\}$.

- $S_1 = \{13\} \text{ and } S_2 = \{(1,0), (4,0)\}.$
- S₁ = {0,13} and S₂ = {(1,0), (4,0)}

No, the answer is incorrect.

Score: 0

Accepted Answers:

 $S_1 = \{0, 13\}$ and $S_2 = \{(1, 0), (4, 0), (4, 1), (4, 2), (4, 3), (4, 4)\}.$

8) Consider a cryptosystem given by P={a,b}, C={1,2,3,4}, K={k₁, k₂, k₃} and the encryption 1 point matrix

	а	b
k ₁	1	2
k ₂	2	3
k ₃	3	4

Pr[X=a]=1/4,Pr[X=b]=3/4, and keys are chosen uniformly at random. The find the correct statement.

Introduction To Cryptology - - Unit 2 - Week 1

• Pr[X=a|Y=1] = 1; Pr[X=a|Y=2] = 1/3.

● Pr[X=a |Y=1] = 1/3; Pr[X = a|Y = 2] = 1/9.

• Pr[X = a|Y=1] = 1/9: Pr[X = a|Y = 2] = 1/9.

• Pr[X = a|Y=1] = 1: Pr[X = a|Y=2] = 1/4.

No, the answer is incorrect.

Score: 0

Accepted Answers: Pr[X = a|Y=1] = 1: Pr[X = a|Y=2] = 1/4.

9) Here two statements **A** and **B** are given

Statement A:- The affine cipher achieves perfect secrecy if every key is used with equal probability 1/312.

Statement B:- A cryptosystem (*P*,*C*,*K*,*E*,*D*), where |P| = |C| = |K| provides perfect secrecy if every ke used with equal probability 1/|K| and for every $x \in P$ and for every $y \in C$ there is a unique key $k \in K$ su that $e_k(x) = y$. Pick the correct option.

- Statement A and Statement B both are true.
- Statement A is true but Statement B is not.
- Statement B is true but Statement A is not.
- Statement A and Statement B both are not true.

No, the answer is incorrect.

Score: 0

Accepted Answers: Statement A and Statement B both are true.

10)Consider the cryptosystem in which $P = \{a, b, c, d\}$, $C = \{1, 2, 3, 4\}$ and $K = \{k_1, k_2, k_3\}$. **1** point Suppose the encryption matrix is as follows:

	а	b	С	d
<i>k</i> ₁	1	2	3	4
k ₂	2	3	4	1
k ₃	3	4	1	2

Suppose that keys are used with following probabilities,

 $Pr[K = k_1] = Pr[K = k_2] = 1/4$, $Pr[K = k_3] = 1/2$ and plaintext distribution is Pr[X = a] = 1/4, Pr[X = b] = 1/2,

Pr[X = c] = 1/8 = Pr[X = d]. Then

Pr[Y = 3] = 9/32 and Pr[X = a |Y = 1] = 2/5
 Pr[Y = 3] = 5/32 and Pr[X = a |Y = 1] = 2/5
 Pr[Y = 3] = 5/16 and Pr[X = a |Y = 1] = 1/5

• Pr[Y = 3] = 7/32 and Pr[X = a | Y = 1] = 1/5

No, the answer is incorrect. Score: 0

Accepted Answers: *Pr*[Y = 3] = 9/32 and *Pr*[X = a | Y = 1] = 2/5

Previous Page

End

1 point

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

Funded by

Government of India Ministry of Human Resource Development

