Unit 2 - Week 1

Course outline

How to access the portal?

Week 1

Lecture 1:
Introduction,
Caesar cipher
Lecture 2
Modular
Arithmetic, Shift
Cipher
Lecture 3:
Classical
Ciphers: Affine
Cipher and Vigenère Cipher

Lecture 4:
Perfect secrecy
and Application on Shift Cipher

Lecture 5:
Problem
Discussion on
Affine Cipher
and Perfect
secrecy
Quiz :
Week1_Assignment1
Assignment Solutions

Feedback form for Week-1

Week 2

Week 3

Week 4

Week1_Assignment1

The due date for submitting this assignment has passed. Due on 2017-08-07, 23:59 IS As per our records you have not submitted this assignment.

1) Let $P=\{0,1,2\}, C=\{1,2,3,4\}$ and for a random key k, e_{k} and e_{k} ' be two functions from P to $C \quad 1$ point such that $e_{k}(0)=1, e_{k}(1)=2, e_{k}(2)=4$ and $e_{k}^{\prime}(0)=2, e_{k}^{\prime}(1)=3, e_{k}{ }^{\prime}(2)=4$ respectively. Choose the correct statement.
e_{k} and e_{k} ' both are encryption functions.
e_{k} is an encryption function but e_{k} ' is not.
$e_{k}{ }^{\prime}$ is an encryption function but e_{k} is not.
e_{k} and e_{k} ' both are not an encryption functions.

No, the answer is incorrect.
Score: 0
Accepted Answers:
e_{k} and e_{k}^{\prime} both are encryption functions.
2) Which is correct?
$-47 \bmod 16=1$ and $(-47)^{-1} \bmod 16=1$.
$-47 \bmod 16=1$, but $(-47)^{-1} \bmod 16$ does not exist.
$-47 \bmod 16=15$, but $(-47)^{-1} \bmod 16=15$.
$-47 \bmod 16=15$ and $(-47)^{-1} \bmod 16=1$.
No, the answer is incorrect.
Score: 0
Accepted Answers:
$-47 \bmod 16=1$ and $(-47)^{-1} \bmod 16=1$.
3) Let $\operatorname{gcd}(66,255)=d$ and there exist $r, s \in Z$ such that $255 r+66 s=d$. Pick the correct value of 1 point r, s and d.
$r=-7, s=27$ and $d=3$.
$r=7, s=27$ and $d=3$.
$r=7, s=-27$ and $d=3$.
$r=-7, s=-27$ and $d=3$.

No, the answer is incorrect.
Score: 0
Accepted Answers:
$r=7, s=-27$ and $d=3$.
4) Let r_{1} and r_{2} be the numbers of all possible keys of affine cipher and Vigenere cipher,

1 point respectively, where affine cipher : $\mathscr{P}=\mathscr{C}=\mathbb{Z}_{20}$ and $\mathscr{K}=\left\{(a, b) \in \mathbb{Z}_{20} \times \mathbb{Z}_{20}: \operatorname{gcd}(a, 20)=1\right\}$, and Vigenere

Cipher: $\mathscr{P}=\mathscr{C}=\mathbb{Z}^{4}{ }_{20}=\mathscr{K}$. Pick the correct answer.
$r_{1}=160$ and $r_{2}=16000$.
$r_{1}=160$ and $r_{2}=160000$.
$r_{1}=400$ and $r_{2}=160000$.
$r_{1}=40$ and $r_{2}=16000$.
No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
r_{1}=160 \text { and } r_{2}=160000 \text {. }
$$

5) Consider a shift cipher with $P=C=Z_{26}=K$.Suppose that " X " is encrypted to "D". Then the encryption of "IAMAGOODBOY" is

OGSGMUUJNUE
OGSGQUUJNUE
OGSGMUUJHUE
OGSGMUUJNUF
o, the answer is incorrect.
Score: 0

Accepted Answers:

OGSGMUUJHUE

6) Consider an affine cipher, where $P=C=Z_{16}$ and $K=\left\{(a, b) \in Z_{16} \times Z_{16}: \operatorname{gcd}(a, 16)=1\right\}$. If $k=(15,2)$, then
$e_{k}(7)=11$ and $d_{k}(7)=11$.
$e_{k}(7)=11$ and $d_{k}(11)=11$.
$e_{k}(7)=7$ and $d_{k}(7)=11$.
$e_{k}(7)=7$ and $d_{k}(11)=11$.
No, the answer is incorrect.
Score: 0
Accepted Answers:
$e_{k}(7)=11$ and $d_{k}(7)=11$.
7) If an encryption function e_{k} is identical to the decryption function d_{k}, then k is said to be an 1 point involutary key. Let the set of involutary keys in the shift cipher over Z_{26} is S_{1} and in the affine cipher over Z_{5} is S_{2}. Then
$S_{1}=\{0\}$ and $S_{2}=\{(1,0),(4,0),(4,1),(4,2),(4,3),(4,4)\}$.
$S_{1}=\{0,13\}$ and $S_{2}=\{(1,0),(4,0),(4,1),(4,2),(4,3),(4,4)\}$.
$S_{1}=\{13\}$ and $S_{2}=\{(1,0),(4,0)\}$.
$S_{1}=\{0,13\}$ and $S_{2}=\{(1,0),(4,0)\}$
No, the answer is incorrect.
Score: 0

Accepted Answers:

$S_{1}=\{0,13\}$ and $S_{2}=\{(1,0),(4,0),(4,1),(4,2),(4,3),(4,4)\}$.
8) Consider a cryptosystem given by $P=\{a, b\}, C=\{1,2,3,4\}, K=\left\{\mathrm{k}_{1}, \mathrm{k}_{2}, \mathrm{k}_{3}\right\}$ and the encryption

1 point matrix

	a	b
k_{1}	1	2
k_{2}	2	3
k_{3}	3	4

$\operatorname{Pr}[X=a]=1 / 4, \operatorname{Pr}[X=b]=3 / 4$, and keys are chosen uniformly at random. The find the correct statement.

- $\operatorname{Pr}[\mathrm{X}=a \mid \mathrm{Y}=1]=1 ; \operatorname{Pr}[\mathrm{X}=a \mid \mathrm{Y}=2]=1 / 3$.
$\operatorname{Pr}[X=a \mid Y=1]=1 / 3 ; \operatorname{Pr}[X=a \mid Y=2]=1 / 9$.
$\operatorname{Pr}[X=a \mid Y=1]=1 / 9: \operatorname{Pr}[X=a \mid Y=2]=1 / 9$.
($\operatorname{Pr}[X=a \mid Y=1]=1: \operatorname{Pr}[X=a \mid Y=2]=1 / 4$.
No, the answer is incorrect.
Score: 0
Accepted Answers:
$\operatorname{Pr}[X=a \mid Y=1]=1: \operatorname{Pr}[X=a \mid Y=2]=1 / 4$.

9) Here two statements \mathbf{A} and \mathbf{B} are given

Statement A:- The affine cipher achieves perfect secrecy if every key is used with equal probability 1/312.
Statement B:- A cryptosystem (P, C, K, E, D), where $|\mathrm{P}|=|\mathrm{C}|=|\mathrm{K}|$ provides perfect secrecy if every ke used with equal probability $1 /|K|$ and for every $x \in P$ and for every $y \in C$ there is a unique key $k \in K$ su that $e_{k}(x)=y$. Pick the correct option.

Statement A and Statement B both are true.
Statement A is true but Statement B is not.
Statement B is true but Statement A is not.
Statement A and Statement B both are not true.

No, the answer is incorrect.
Score: 0

Accepted Answers:

Statement A and Statement B both are true.
10Consider the cryptosystem in which $P=\{a, b, c, d\}, C=\{1,2,3,4\}$ and $K=\left\{k_{1}, k_{2}, k_{3}\right\} . \quad 1$ point Suppose the encryption matrix is as follows:

	a	b	c	d
k_{1}	1	2	3	4
k_{2}	2	3	4	1
k_{3}	3	4	1	2

Suppose that keys are used with following probabilities,
$\operatorname{Pr}\left[K=k_{1}\right]=\operatorname{Pr}\left[K=k_{2}\right]=1 / 4, \operatorname{Pr}\left[K=k_{3}\right]=1 / 2$ and plaintext distribution is $\operatorname{Pr}[X=a]=1 / 4, \operatorname{Pr}[X=b]=$ 1/2,
$\operatorname{Pr}[X=c]=1 / 8=\operatorname{Pr}[X=d]$. Then

$$
\begin{aligned}
& \operatorname{Pr}[Y=3]=9 / 32 \text { and } \operatorname{Pr}[X=\text { a } \mid Y=1]=2 / 5 \\
& \operatorname{Pr}[Y=3]=5 / 32 \text { and } \operatorname{Pr}[X=\text { a } \mid Y=1]=2 / 5 \\
& \operatorname{Pr}[Y=3]=5 / 16 \text { and } \operatorname{Pr}[X=\text { a } \mid Y=1]=1 / 5 \\
& \operatorname{Pr}[Y=3]=7 / 32 \text { and } \operatorname{Pr}[X=\text { a } \mid Y=1]=1 / 5
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\operatorname{Pr}[Y=3]=9 / 32$ and $\operatorname{Pr}[X=a \mid Y=1]=2 / 5$
© 2014 NPTEL - Privacy \& Terms - Honor Code - FAQs -

