Sigmoid function

Ask a Question

Due on 2019-09-04, 23:59 IST.

1 point

## Course outline

Matlab and Learning

portal?

Modules

Week 1

Week 2

Week 3

Week 4

Week 5

 Introduction to Week 5 (Deep Learning)

Logistic Regression

Binary Entropy cost

function

Gates

XOR Gate

sigmoid

regression

Multinomial

Multinomial

Hot Vector

Multinomial

Softmax

Classification -

Schematic of

regression

Structure of an

Network

Assignment 5

Week 5 Feedback :

Engineering and

solutions

Week 6

Week 7

Week 8

Week 9

Week 10

Week 11

Week 12

DOWNLOAD VIDEOS

Live Sessions

**Text Transcripts** 

prop

Biological neuron

Artificial Neuron

Introduction to back

multinomial logistic

OR Gate Via

Classification

O NOR, AND, NAND

Differentiating the

Gradient of logistic

 Code for Logistic Regression

> Classification-Introduction

Classification - One

Unit 8 - Week 5

## Assignment 5 How to access the The due date for submitting this assignment has passed. As per our records you have not submitted this assignment. **Prerequisites** Consider the cut section of a deep neural network as shown in the diagram given below. It can be seen that it has two Assignment

NPTEL » Machine Learning for Engineering and Science Applications

If  $[x_1,x_2]=[1,2]$  , the forward pass calculations give  $[z,z_1,z_2,z_3,f]=[1,-1,0.3679,1.3679,0.7311]$ . The mathematical operations enclosed in the yellow rectangular box collectively represent the sigmoid function which is defined

inputs  $x_1$  and  $x_2$  . From the figure,  $z=w_1x_1+w_2x_2+b$  ,  $z_1=-z$  ,  $z_2=e^{z_1}$  ,  $z_3=z_2+1$  and  $f=\dfrac{1}{z_2}$  .

as  $\sigma(z)=rac{1}{1+e^{-z}}$  where  $z=w_1x_1+w_2x_2+b$ . Suppose that J represents error and it is known that  $rac{\partial J}{\partial f}=1$ . Back propagating using chain rule



No, the answer is incorrect. Score: 0







5) Choose the correct combination of network weights for it to work as AND gate. The activation function is sigmoid



 $\varphi = max(0, x)$ 

 $\varphi = tanh(x)$ 

Accepted Answers:  $\varphi = max(0, x)$ 

Score: 0

problems.

No, the answer is incorrect.

0

given examples

No, the answer is incorrect.

(Type: Range) -0.20,-0.19

 $x_1$ 

0

0

 $x_2$ 

0

0

0

0

Accepted Answers:

Score: 0

 $arphi(x) = rac{1}{1+e^{-x}}$ 



7) Which of the following statements are true for sigmoid and softmax functions?

The sum of output values may or may not be equal to one for softmax function

the weighted sum of the inputs, but also for the inputs to the other output nodes

The sum of output values is equal to one for softmax function



In the logistic regression model, sigmoid is used for binary classification while softmax is used for multi classification

The sigmoid function accounts only for the weighted sum of inputs. However, the softmax function accounts not only for



For the neural network shown below, the activation function is sigmoid and cost function is binary cross entropy. The weights

Sigmoid Sigmoid  $Z^{(1)}_{1}$ y\_hat Sigmoid  $Z^{(1)}_{2}$  $a^{(1)}_{2}$ 

and biases are initialized to 1. Answer the following questions:



 $x_1$ 

0

0

 $\mathbf{1}^{st}$  and  $\mathbf{2}^{nd}$ 

 $2^{nd}$  and  $3^{rd}$ 

 $3^{rd}$  and  $4^{th}$ 

 $\mathbf{4}^{th}$  and  $\mathbf{1}^{st}$ 

Accepted Answers:

 $2^{nd}$  and  $3^{rd}$ 

No, the answer is incorrect.

 $x_2$ 

0

0

Table 2: Data for Q10

0

0