Unit 5 - Week 3

Course
 outline

How to access
the portal

Week 0

Week 1

Week 2

Week 3

- Tail Bounds I-

Markov's
Inequality

- Tail Bounds I -

The Second Moment,Variance
\& Chebyshev's Inequality

- Tail Bounds I -

Median via
Sampling
Tail Bounds I -
Median via
Sampling -
Analysis

- Tail Bounds I -

Moment
Generating
Functions and
Chernoff
Bounds
Quiz:
Assignment 3

- Week 3

Feedback
Solution to
week 3
Assignment

Week 4

Download

Ineraction

Session

Assignment 3

The due date for submitting this assignment has passed. Due on 2018-02-28, 23:59 IST.

Submitted assignment

1) Consider two unbiased coins that are flipped independently. Let $X \in\{0,1\}$ and $Y \in\{0,1\} 1$ point be two random variables denoting their outcomes with 1 indicating heads and 0 indicating tails. Suppose we limit the sample space of the experiment to $S=\{01,10,11\}$ instead of the actual $S=\{00,01,10,11\}$. What is the co-variance of the two random variables?

$$
\begin{aligned}
& \frac{1}{2} \\
& \frac{3}{4} \\
& \frac{-1}{3} \\
& \frac{-1}{9}
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
\frac{-1}{9}
$$

2) Let X be the random variable that takes on the value generated by selecting an integer uniformly at random from the interval $[1, n]$. What is $E[X]$?
\square
$\frac{n}{2}$
$\frac{n+1}{2}$
$\frac{1}{n}$
No, the answer is incorrect.
Score: 0
Accepted Answers:
$\frac{n+1}{2}$
3) Let X be the random variable that takes on the value generated by selecting an integer 1 point uniformly at random from the interval $[1, n]$. What is the second moment of X ?
n^{2}

No, the answer is incorrect.
Score: 0

Accepted Answers:
 $\frac{(2 n+1)(n+1)}{6}$

4) Let X be the random variable that takes on the value generated by selecting an integer uniformly at random from the interval $[1, n]$. What is $\operatorname{Var}[X]$?
```
\frac{n}{2}-1
\frac{n}{2}
(n)(n+1)
O
\frac{n}{12}
```

No, the answer is incorrect.
Score: 0

Accepted Answers:

$\frac{n^{2}-1}{12}$
5) We learnt that Markov's inequality gives a pretty weak bound. When would you say it's a

1 point good choice to use Markov's inequality?

When expectation of a random variable is pretty high (such as $n / 2$)

When expectation of a random variable can be brought down to very low values (such as $\frac{1}{n^{3}}$)
No, the answer is incorrect.
Score: 0
Accepted Answers:
When expectation of a random variable can be brought down to very low values (such as $\frac{1}{n^{3}}$)
6) Let X be the random variable that counts the number of times an unbiased coin turns up 1 point head when it is tossed n times independently. Using Markov's inequality, the probability that the number of heads is at least $\frac{3 n}{4}$ is at most

```
n
O
\frac{1}{2}
O
\frac{1}{4}
\frac{2}{3}
```

No, the answer is incorrect.
Score: 0

Accepted Answers:

$\frac{2}{3}$

For a $0-1$ random variable X, is $E\left[X^{2}\right]=E[X]$? What about $E\left[X^{n}\right]$ for some large integer n ? Choose which one of the following statements is correct.

$$
\begin{aligned}
& E\left[X^{2}\right]=E[X] \text { and } E\left[X^{n}\right]=E[X] \\
& E\left[X^{2}\right] \neq E[X] \text { but } E\left[X^{n}\right]=E[X] \\
& E\left[X^{2}\right]=E[X] \text { but } E\left[X^{n}\right] \neq E[X] \\
& E\left[X^{2}\right] \neq E[X] \text { and } E\left[X^{n}\right] \neq E[X]
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
E\left[X^{2}\right]=E[X] \text { and } E\left[X^{n}\right]=E[X]
$$

8) Let X be the random variable that counts the number of times heads turns up when an 1 point unbiased coin is tossed n times. Recall that the Chebyshev's inequality states:
$\operatorname{Pr}(|X-E[X]| \geq a) \leq \frac{\operatorname{Var}(X)}{a^{2}}$ Using Chebyshev's inequality, the probability the number of heads is at least $\frac{3 n}{4}$ is at most
```
O
n
4
O
\frac{1}{n}
\frac{2}{3}
```

No, the answer is incorrect.
Score: 0

Accepted Answers:

$\frac{4}{n}$
9) Consider a random variable X. If for a constant $c, E[c X]=c E[X]$, what is $\operatorname{Var}(c X)$?

$$
\begin{aligned}
& \operatorname{Var}(c X)=c \operatorname{Var}(X) \\
& \operatorname{Var}(c X)=\frac{1}{c} \operatorname{Var}(X) \\
& \operatorname{Var}(c X)=c^{2} \operatorname{Var}(X) \\
& \operatorname{Varc}(c X)=0
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\operatorname{Var}(c X)=c^{2} \operatorname{Var}(X)$
10)What is the variance of a geometric random variable that has a probability p of success?

$\frac{1-p}{p}$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\frac{1-p}{p^{2}}$
11__et's consider an experiment in which a fair coin is tossed n times to obtain n random bits. 1 point Consider $m=\binom{n}{2}$ pairs of these bits in some order. Let Y_{i} be the exclusive-or of the $i^{t h}$ pair of bits. Let $Y=\sum_{i=1}^{m} Y_{i}$ be the number of Y_{i} that equal to 1 . What is the probability that any given Y_{i} is 0 ?

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\frac{1}{2}$
12)n the experiment described in 11, are any two given random variables Y_{i} and Y_{j} guaranteed 1 point to be always independent?

No
Yes
No, the answer is incorrect.
Score: 0
Accepted Answers:
Yes
13)n the experiment described in 11, is $E\left[Y_{i} Y_{j}\right]=E\left[Y_{i}\right] E\left[Y_{j}\right]$?No
Yes
No, the answer is incorrect.
Score: 0
Accepted Answers:
Yes
14For a coin that comes up heads with probability p on each flip, let X denote the number of 1 point flips until the $k^{\text {th }}$ head appears. What is the $\operatorname{Var}[X]$?

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\frac{k(1-p)}{p^{2}}$
Consider the median finding algorithm for finding the median m of a set S of n items from an ordered universe on page ~ 54 of the textbook `Probability and Computing: Randomized Algorithms and Probabilistic Analysis" by Michael Mitzenmacher and Eli Upfal (First Edition) 1. The following four questions are based on your comprehension of the algorithm and its analysis. (Please note that this material is being used for educational purposes in this assignment.)
15)

1 point
Additional material for question 15 to 18
CLICK HERE

Can the median finding algorithm output an element in S that is not the median?

```
yes
No
```

No, the answer is incorrect.
Score: 0
Accepted Answers:
No
16)Which step in the algorithm guarantees the outcome presented in the previous question?

Step 6
Step 7
Step 8
Step 5
No, the answer is incorrect.
Score: 0

Accepted Answers:

Step 6
17)Would any of the following conditions lead the algorithm to fail in finding the median? Choose 1 point all that apply.

When median is in C

When median is not in C
When the set is sorted

When median is $n / 2$
None of the above
No, the answer is incorrect.
Score: 0

Accepted Answers:

When median is not in C
18Consider the following description of events for the median finding algorithm from the textbook `Probability and Computing: Randomized Algorithms and Probabilistic Analysis" by Michael Mitzenmacher and Eli Upfal (First Edition) 1, where m is the median: $\mathcal{E}_{1}:|C|>4 n^{3 / 4}$
$\mathcal{E}_{2}: Y_{1}=|\{r \in R \mid r \leq m\}|<1 / 2 n^{3 / 4}-\sqrt{n}$
$\mathcal{E}_{3}: Y_{3}=|\{r \in R \mid r \geq m\}|<1 / 2 n^{3 / 4}-\sqrt{n}$ When will the algorithm fail? Choose all options that may apply.

```
    None of the events happen.
If }\mp@subsup{\mathcal{E}}{1}{}\mathrm{ happens.
```

If at least one of the three events occur.If all three events occur.

No, the answer is incorrect.
Score: 0
Accepted Answers:
If \mathcal{E}_{1} happens.
If at least one of the three events occur.
If all three events occur.
19)What is the moment generating function $M_{X}(t)$ of a Bernoulli random variable X which has a 1 point probability p of success?

$$
\begin{aligned}
& p e^{t} \\
& 1+p e^{t+1} \\
& 1+p\left(e^{t}-1\right) \\
& 1+p e^{t-1}
\end{aligned}
$$

No, the answer is incorrect.
Score: 0

Accepted Answers:

$1+p\left(e^{t}-1\right)$
20Alice and Bob play chess often. Alice wins any given game they play with probability $0.6 . \quad 1$ point They both decide to play n games in total. Use the following Chernoff bound to bound the probability that Alice loses more than half the games they play. For $0 \leq \delta \leq 1, \operatorname{Pr}(X \geq(1+\delta) \mu) \leq e^{\frac{-\mu \delta^{2}}{3}}$ Choose the answer that is most appropriate.

No, the answer is incorrect.
Score: 0
Accepted Answers:
$e^{\frac{-n}{120}}$

Previous Page
End

A project of
NPTEL
National Programme on Technology Enhanced Learning

In association with

Funded by
Government of India
Ministry of Human Resource Development

Powered by

