	er Organization and Architecture			
nit 6 - We	Announcements Course Forum Progress	Mentor		
Course outline	Week 5 Assignment			
low to access he portal				
Veek 1	1) Select the true statement	1 po		
Veek 2	 In the Load-Store architecture, all instructions use memory In the Load-Store architecture, instructions use minimal access to memory 			
Veek 3	In the Load-Store architecture, only load and store access memory			
Veek 4	In the Load-Store architecture, every instruction works using registers			
Veek 5				
 Lecture 12 - Orthogonal ISA, C Constructs Mapping, Addressing Modes 	Accepted Answers: In the Load-Store architecture, only load and store access memory 2) Choose the correct formula for Effective Address calculation Base + (Size*Scale) +Displacement) (Base + Size)*Scale +Displacement			
Lecture 13 - Atomic and Predicated Instructions	 (Base + Size) Scale +Displacement) (Base + Size)*(Scale +Displacement) 			
Lecture 14 - Atomic and Predicated Instructions (Contd.)	Accepted Answers: Base + (Size*Scale) +Displacement)			
Lecture 15 - General Purpose Registers	 3) TestandSet(V) should be a predicate instruction atomic instruction 	1 poi		
 Lecture 16 - Expanding opcodes Quiz : Week 5 Assignment 	Accepted Answers: atomic instruction	1 po		
Feedback for week 5	 4) The main need for the TestandSet(V) instruction is Process switching 			
Week 5 Assignment	 Task Switching Process Synchronization 			

12/28/2017

Week 8

- Week 9

Week 10

Week 11

Week 12

	Computer Organization and Architecture Unit 6 - Week 5	
	Accepted Answers: Process Synchronization	
	5) Atomicity of the TestandSet(V) is ensured by	1 point
0	Software	
4	Programming Language	
1	Compiler Hardware	
2		
	Accepted Answers:	
	Hardware	
	6) CMOV is a predicated instruction because	1 point
	It takes less memory	
	 It runs only when a condition is satisfied It is an atomic instruction 	
	 It is an atomic instruction It is an optional instruction 	
	Accepted Answers:	
	It runs only when a condition is satisfied	4
	7) RISC Architectures are Load-Store Architectures because of	1 point
	Fixed-Instruction Length	
	 Easiness for compiler Less number of instructions 	
	 Large number of instructions 	
	Accepted Answers:	
	Fixed-Instruction Length	4 m a in 4
	8) Maximum clique in a register graph is an indicator of	1 point
	Possibility of deadlock	
	 Number of registers needed Size of the program 	
	 Size of the program Size of cache 	
	Accepted Answers:	
	Number of registers needed	
	9) Register Spilling happens when	1 point
	 There are too many registers 	
	 There are not enough registers The data is larger than the register size 	
	 The data is larger than the register size There is not enough data to put in memory 	
	Accepted Answers:	

Accepted Answers: There are not enough registers Previous Page

End

