

MPTEIR

reviewer1@nptel.iitm.ac.in ▼

Courses » Computer Organization and Architecture

Announcements Course Forum Progress Mentor

Unit 13 - Week 12

Course outline	Week 12 Assignment	
How to access the portal		
Week 1	Assignment Week 12	
Week 2	1) A multi-processor system which at any point of time doesn't need to have multiple process accessing the same memory location is called	sors 1 point
Week 3	Exclusive Read Exclusive Write PRAM model	
Week 4	Concurrent Read Inclusive Write PRAM modelConcurrent Read Concurrent Write PRAM model	
Week 5	None of the above	
Week 6		
Week 7	Accepted Answers: Exclusive Read Exclusive Write PRAM model	
Week 8	2) There is need to ensure synchronization in which of these models	1 point
Week 9	○ EREW ○ CREW	
Week 10	CRCW	
Week 11	All of the above	
Week 12		
Lecture 38 (Part 2) - Lab 4 : Task Switching (Accepted Answers: CRCW	
Contd)	3) In the case of PRAM, a barrier achieves which of the following	1 point
 Lecture 39 - Shared Memory Architecture, Cache Coherence 	Processes crosses the barrier as soon as it reaches	
	Processes stop execution at the barrier	
	Each process waits until another process stops at the barrier	
Lecture 40 (Part 1) - Concurrent Programming in Hardware	Each process waits until all the processes complete the execution.	
Lecture 40 (Part	Accepted Answers: Each process waits until all the processes complete the execution.	
2) - Concurrent Programming in Hardware	4) Which of these is the characteristic of an optimal algorithm	1 point
	No. of processors * Time < Complexity of best known sequential algorithm	
Lecture 41 - Conclusion :	 No. of processors * Time <= Complexity of best known sequential algorithm No. of processors * Time = Complexity of best known sequential algorithm 	

12/28/2017

Recent Trends in Computer Organization & Architecture

Quiz : Week 12 Assignment

Feedback for Week 12

Week 12Solutions

Computer Organization and Architecture - - Unit 13 - Week 12

None of the above

Accepted Answers:

No. of processors * Time = Complexity of best known sequential algorithm

5) Consider the following scenario. Core P1 holds an address A1 in exclusive state and it is connected to two other processors P2 and P3 through a common bus. There wont be any communication on the bus when

P1 writes to A1 in P2

P3 writes to A1 in P3

P3 writes to A1 in P1

P1 writes to A1 in P1

Accepted Answers:

P1 writes to A1 in P1

Previous Page

End

1 point

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

A project of

In association with

Funded by

Government of India Ministry of Human Resource Development

Powered by

