
QUESTIONS

Sr.
no.

Question Options Answer & Explanation

1
For the following statements,
would arr[3] and ptr[3] fetch
the same character?

char arr[]=”Surprised”
char *ptr=”Surprised”

A. Yes
B. No

Answer: A

Explanation:
Both pointers and array can
be used to store a string.

2 What will be the result of
assigning a value to an array
element whose index
exceeds the size of the
array?

A. Compilation error
B. The element is
initialized to 0.
C. The compiler will
automatically
increase the size of
the array.
D. The program
may crash if some
important data gets
overwritten.

Answer: D

Explanation:
The program may crash is
the correct answer.But
modern compiler will take
care of this kind of
situations.

3 Are ++*ptr and *ptr++

same ?

A. Yes

B. No

Answer: B

Explanation: ++*ptr

increments the value being

pointed to by ptr.

*ptr++ means grab the

Value of (*ptr) and then

increment it.

4 What does the array ‘arr’
refer to?

int* arr[8];

A. Array of
integers

B. Array of
integer
pointers

Answer: B

Explanation:
It is an array which can
store integer pointers

C. A pointer to
an array of
integers

D. Any of
above.

5 What is the output of the
following code snippet?

1. int x = 5, y = 15;
2. int * p1, * p2;
3. p1 = &x;
4. p2 = &y;
5. *p1 = 10;
6. *p2 = *p1;
7. p1 = p2;
8. *p1 = 20;
9. printf("%d %d",x,y);

A. 20 20
B. 10 10
C. 10 20
D. 20 10

Answer:C

Explanation:
In line 5, *p1 = 10; so the
value of variable x is
changed to 10.
In line 6, *p2 = *p1 →
value of variable y is
changed to 10
In line 7, p1 = p2 →
pointer p1 points to
variable y now
In line 8, *p1 = 20 →
value of variable y is now
changed to 20

6 What is a "void" pointer? A. Variable with
data type as "void"
B. Pointer returning
variable of type
"void"
C. It has no
associated data
type
D. It can hold
address of any
datatype

Answer: C,D

Explanation:
A void pointer is a pointer
that has no associated
datatype with it.It can hold
address of any datatype and
can be typcasted to any
datatype.

7 What will be the output of the
following program?
#include<stdio.h>
int main(){

char *name="INDIA";
int x;
char *cptr = name;
while(*cptr != '\0')
{

cptr++;
}
x = cptr - name;
printf("%d", x);

 return 0;
 }

A. 3
B. 4
C. 5
D. 6
E. compilation

error

Answer: C

Explanation:
Program is calculating string
length using pointer.

8 What will be the output of the
program?
#include<stdio.h>

main()
{
 int a[3]
[4]={1,2,3,4,4,3,2,1,1,3,4,1};
 printf("%d",*(*(a+1)+2));

}

A. 1
B. 2
C. 3
D. 4

Answer:B

Explanation:
a:- base address of
multidimensional array
(a+1) :- increments the value
of array pointer by 1 that in
turn points to row 2 of
array(property of
multidimensional array
pointer as it points to array of
pointers(which are pointing to
1D arrays)).
(*(a+1)+2) now points to
exact same location as a[1]
[2].

9 What will happen when the
following program is compiled
and run?

#include<stdio.h>
int main(){

int a[]={1,2,3,4,5};
int b[]={1,2,3,4,5};

if(a==b){
printf("yes");

}else{
printf("no");

}
return 0;

}

A. yes
B. no
C. The

program will
encounter a
compilation
error.

D. There will be
a runtime
error in the
program.

Answer: B

Explanation:
If statement will compare the
base address of two arrays
‘a’ and ‘b’,and they are not
same.
So condition becomes false
and program prints “no”

10 Given the following program,

which statement will produce

a compilation error?

#include<stdio.h>

main()

{

 int k1=1;

 int k2=5;

 int *ptr1=&k1;

 int *ptr2=&k2;

A. Statement 1
B. Statement 2
C. Both
D. None

Answer:A

Explanation:
Addition of pointers are not
allowed in C,whereas
subtraction is allowed.

 printf("%d\n",((ptr1-

ptr2))); //Statement 1

printf("%d\n",*(ptr1+ptr2)); //

Statement 2

}
11 Find the output:

main() {

 char * A[] = {"C", "C++",

"JAVA", "PHP"};

char **B[] = {A+2, A+1, A+3,

A}, ***C;

C = B;

 ++C;

 printf("%s", *(*C+1)+1);

 }

A. C++

B. ++

C. AVA

D. JAVA

Answer: C

Assume the following

memory locations for

different strings and the

pointers.

C= B will initialize it to

200.

++C => C has address

208

*C+1 => its pointing to

next location of 108

(116)

*(*C+1)+1 => pointing

to 2nd character at 116

printing *(*C+1)+1 will

print all characters from

2nd character of JAVA
12 a[x][y][z] is same as A. *(*(*(a+x)+y)+z)

B. *(*(*(a+z)+y)+x)

C. *(*(*(a+x+y))+z)

D. None of the

above

Answer: A

Explanation:

Multidimensional arrays are

indexed in the order of

highest to lowest. Here,

a[x] and *(a+x) refer to the

same “plane”. Pointer

arithmetic is done internally

by the compiler the way it is

suggested in the answers.
13 char abc[14] = "C

Programming";

printf("%s", abc + abc[3] -

abc[4]);

What would this print?

A. C Programming

B. rogamming

C. Runtime Error

D. Compilation

Error

Answer : B

abc[3] = r = 114(ASCII)

abc[4] = o = 111(ASCII)

= (abc + 114 - 111)

= (abc + 3)

14 What does this mean

int ** fun(int **)

A. A function

accepting

pointer to pointer

to an int and

returns pointer to

pointer to an int

B. A function

accepting

pointer to pointer

to an int and

returns pointer

to an int

C. A function

accepting

pointer to an int

and returns

pointer to pointer

to an int

D. None of the

above

Answer : A

Explanation : int indicates

an integer variable

int * indicates a pointer to

an integer variable

int ** indicate a pointer to

pointer to an integer

variable

15 Assume that the size of an

integer is 4 bytes.

What will be the output of the

following code:

int a[2][2]={{2,3},{1,6}};

printf(“%d”,&a[0][1] - &a[0][0]);

A. 1

B. 2

C. 4

D. 8

E. Garbage value

Answer: A

Explanation: Subtracting

pointers gives total number of

objects between them

16 Assume the following C

variable declaration

A. I, II, and IV only

B. II, III, and IV only

Answer: A

Explanation:

int *A[10],B[10][10]

Among the following

expressions

I A[2]

II A[2][1]

III B[1]

IV B[2][3]

Which will not give compile-

time errors if used as left hand

sides of assignment

statements in a C program?

C. II and IV only

D. IV only

I is valid, assigning value to

pointer A[2],

II is valid, possible due to

array styled indexing of

pointers

IV is valid, simple assignment

to 2-dimensional array

Example:

int *A[10], B[10][10];

int C[2]={1,6};

A[2]=C;

A[2][1]=5;

B[2][3]=4

17 I strlen

II strchr

III strcat

IV strcmp

Among the above list which of

the following are string

functions defined?

(A) I only

(B) I, III only

(C) I, III, IV only

(D) All of the Above

Answer: D

Explanation:

strlen: Computes string

length

strchr: Search string for a

character

strcat: Concatenating two

strings

strcmp: Compare two strings

Programming Questions

Program 0: Largest Sum Contiguous Subarray
Write an efficient C program to find the sum of contiguous subarray within a one-dimensional
array of integer which returns the largest sum.

Explanation:
Lets take the example of array {5,-3, 4}
Possible contiguous subarray combinations are
{5}, {-3}, {4}, {5,-3}, {-3,4}, {5,-3,4}
The contiguous subarray {5,-3,4} has got the largest sum 6

Input Constraints:
First line : array size (N), where 1<= N<=100
Second line : N integers of separated by spaces
where each number Ni satisfies
-10000 <= Ni <=10000

Output Constraints:
Single integer SUM which is the largest of sum of all possible contiguous subarray

Public Test Cases:

id Input Output
1 3

5 -3 4
6

2 4
1 1 1 1

4

3 8
-2 -3 4 -1 -2 1 5 -3

7

4 5
-5 -2 4 5 1

10

Private Test Cases:

id Input Output
1 7

-1 -2 -3 -4 -5 -6 -7
-1

2 2
2000 2000

4000

3 10
-3 -4 1 2 3 -1 2 5 -8 8

12

4 5
-10000 -10000 -10000
-10000 -10000

-10000

5 6
-1 2 -2 4 -3 6

7

6 6
1 -2 2 -4 3 -6

3

7 9
0 -1 0 0 0 0 -1 0 0

0

8 20
1 1 1 1 1 1 1 1 1 1 -2 -3 1 1 1
1 -1 1 1 1

11

Code:
In general one would approach this problem by iterating for all possible start and end
combinations which would make N*(N-1)/2 combinations.

But instead of this one could solve this using pre-computation i.e, let us consider
cur_max(i) is sum of maximum sum contiguous subarray ending at index i, then cur_max(i) is
given by,

cur_max(i) = max(cur_max(i-1)+val(i),val(i)) where val(i) is value at index i.
Maximum sum subarray can be found by finding the maximum of all cur_max.
By using the precomputed cur_max of i-1 we can compute cur_max of i. Hence the below logic
becomes a optimal computation of largest sum contiguous subarray.

#include<stdio.h>
#define MAX 100

int main()
{

int size,input[MAX],i;
scanf("%d",&size);
for(i=0;i<size;i++){

scanf("%d",&input[i]);
}
//curr_max computes the largest contiguous maximum sum ending at cur_idx
//max_so_far (global maxima)computes the largest contiguous maximum sum till

the cur_idx
long max_so_far = input[0];
long curr_max = input[0];
for (i = 1; i < size; i++){

curr_max = (input[i]>curr_max+input[i]) ? input[i] : curr_max+input[i];
max_so_far =(max_so_far>curr_max) ? max_so_far : curr_max;

}
printf("%ld",max_so_far);
return 0;

}

Program 1: Find whether two given strings are permutations of each other

Write a program to find whether two given strings are permutations of each other. A string str1
is a permutation of str2 if all the characters in str1 appear the same number of times in str2 and
str2 is of the same length as str1.

Input: Two strings S1 and S2
Output:
yes - if they satisfy given criteria

no - otherwise

Constraints:
1 <= len(S1), len(S2) <= 100.
Characters from ASCII range 0 to 127.
White space will not be given in the string.

Public Test cases:

Number Input Output
1. india

daini
yes

2. hellobye
hellobye!

no

3. iloveindia
loveindiai

yes

4. 12434
43214

yes

5. aaa
aa

no

Private Test cases:

Number Input Output
1. iitmadras.

madras.iit
yes

2. nptelisbest
ptenlisestb

yes

3. abcdefg
aabbccddeeffgg

no

4. 12345
1122334455

no

5. #$%&
&%$#

yes

6. (abc)
(xyz)

no

7. "hellobye"
"byehello"

yes

Solution program 1:
#include<stdio.h>
int main(){

int acount[128] = {0}, bcount[128] = {0}, c = 0;

char a[100];
char b[100];

scanf("%s",a);
scanf("%s",b);

//now take every character from string 'a' and using ASCII value increment
corresponding index in array 'acount'

while (a[c] != '\0')
{
acount[(int)a[c]]++;
c++;
}

c = 0;

//now take every character from string 'b' and using ASCII value increment
corresponding index in array 'bcount'

while (b[c] != '\0')
{
bcount[(int)b[c]]++;
c++;
}

for (c = 0; c < 128; c++)
{

//if any single character also mismatch then return no
if (acount[c] != bcount[c])
{

printf("no");
return 0;

}
}
//satisfy criteria so return true
printf("yes");
return 0;

}

Program 2: Find balancing index in array

Write a program that given a number n and a sequence of n integers , it outputs the first(lowest)
index i where the following condition is satisfied:

● Sum of elements at lower indices(<i) = sum of elements at higher indices (>i)
● if the above condition does not hold for any index then output -1
● The Sum of lower indices(<i) when i=0, should be initialized to 0 and the higher

indices(>i) should be initialized to A[1] + A[2] +A[3] ……...A[N-1], where N is the
size of the array.

Explanation:

Output the index of an array such that the sum of elements at lower indices is equal to the sum
of elements at higher indices.

For example, in an array A let:
A[0] = -7, A[1] = 1, A[2] = 5, A[3] = 2, A[4] = -4, A[5] = 3, A[6]=0

3 is a valid answer, because:
A[0] + A[1] + A[2] = A[4] + A[5] + A[6]

Input: The size of array N, followed by N numbers.

Output:
index i - if i is the lowest index of the array satisfying the required condition
-1 - if there does not exist any such index

Constraints:
2 <= sizeof array <= 100
All entries of array,Arr[i] will follow the following property
-1000 <= Arr[i] <= 1000

Public Test cases:

Number Input Output
1. 7 -7 1 5 2 -4 3 0 3
2. 5 -1 5 4 2 -7 1
3. 4 3 2 1 -3 0

4. 3 -3 1 3 -1
5. 2 0 5 1

Private Test cases:

Number Input Output
1. 2 1 0 0
2. 11 1 4 6 -3 2 4 5 4 10 5 -5 6

3. 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 9
4. 5 1 2 3 4 5 -1
5. 20 1 -1
6. 4 -3 -2 -1 -2 1

7. 7 30 1 2 3 -1 -2 -3 0

Solution program 2:
#include <stdio.h>

int main()
{

 int arr_size,i,ans=-1,sum=0,leftsum=0 ;
 scanf("%d",&arr_size);
 int arr[arr_size];// = {-7, 1, 5, 2, -4, 3, 0};
 for(i=0;i<arr_size;i++)
 scanf("%d",&arr[i]);

 /* Find sum of the whole array */
 for (i = 0; i < arr_size; i++)
 sum += arr[i];

 for(i = 0; i < arr_size; i++)
 {
 sum -= arr[i]; // sum is now right sum for index i

 if(leftsum == sum)
 {

 ans=i;
 break;
}

 leftsum += arr[i];

 }

 printf("%d",ans);
 return 0;
}

Programming 3
The depth of a alphabet is the number of parentheses it is surrounded by. So write a
C program to find the depth of each alphabet in the input.

Explanation:
(a (b) ((c d) e) f) g
g is at depth 0
a and f are at depth 1
b and e are at depth 2
c and d are at depth 3

Input Constraints:

● Number of characters in a input ranges from 1 - 100
● The input will have only ‘(‘ , ‘)’ and letters from English alphabet
● There will be no repetition of letters.
● Only lowercase letters are used.
● The letters can be in any sequence.

Input: An array of characters
Output:

● The depth of each letter separated by a space.
● The order of the depth of the letters should be the same order that the letters appear in

the input.
● To mark the end of the output it should end with a space and a ‘#’ character.

Example 1:
Input: (a(b)((cd)e)f)g
Output: 1 2 3 3 2 1 0 #

Example 2:
Input: p(r(q))(s)
Output: 0 1 2 1 #

In this example, letters are appearing in the order p followed by r followed by q and s. They
have depth of 0, 1, 2 and 1 respectively. Note that the depth is not printed in the order p,q,r,s
(the alphabetical order) but p,r,q,s (the order in which they appear in the input string).

Public Test cases:

Number Input Output

1. (a(b)((cd)e)f)g 1 2 3 3 2 1 0 #

2. a(b(c))(d) 0 1 2 1 #

3. a(b(c))(d(fe)) 0 1 2 1 2 2 #

Private Test cases:

Number Input Output

1. a(b(c))(d(f()e)) 0 1 2 1 2 2 #

2. () #

3. ab()(c(d(e(f)()(g)h))) 0 0 1 2 3 4 4 3 #

4. ((((a))b))cdegfhi(jklmnop) 4 2 0 0 0 0 0 0 0 1 1 1 1 1 1 1 #

5. ((a))((b(c)((d(e(f(g(h(i(j(k(l)))))))))))) 2 2 3 4 5 6 7 8 9 10 11 12 #

6. ((a))((b(c)((d()(e(f(g(h(i(j(k(l)))))())))))))(m(n()
(o(p(q(r(s(t()(u(v(w(x(y(z)))))(())))))()))())))

2 2 3 4 5 6 7 8 9 10 11 12 1 2 3
4 5 6 7 8 9 10 11 12 13 14 #

7. ()(()((()))) #

8. (a)b(c(def)g(h(ijkl(mn)o)p)) 1 0 1 2 2 2 1 2 3 3 3 3 4 4 3 2 #

9. (z) 1 #

10. ((x)) 2 #

11. a 0 #

12. abc(d) 0 0 0 1 #

Solution:
#include<stdio.h>

#include<string.h>
int main()
 {
 int a=0,i,set=0;
 char input[100];
 scanf("%s",input);
 for(i=0;input[i]!='\0';i++)
 {

switch(input[i])
 {
 case '(':
 a++;
 break;
 case ')':
 a--;
 break;
 default :
 printf("%d ",a);
 set = 1;
 }

 }
 if(set==0)
 printf(" #");
 else
 printf("#");
 return 0;
}

