| Course outline | |--| | How does an NPTEL online course work? | | Week 0 | | Week 1 | | Week 2 | | Week 3 | | Week 4 | | Week 5 | | Week 6 | | Week 7 | | Week 8 | | Lecture 29: Extremal Set Families | | Lecture 30: Super Concentrators | | Lecture 31: Streaming Algorithms I | | Lecture 32: Streaming Algorithms II | | Week-8 Slides: Extremal set
families and super
concentrators | | Week-8 Slides: Streaming
algorithms | DOWNLOAD VIDEOS Solutions Quiz: Week 8: Assignment 8 Week 8: Assignment 8 Feedback For Week 8 LIVE Session ## Week 8: Assignment 8 The due date for submitting this assignment has passed. Due on 2021-10-20, 23:59 IST. As per our records you have not submitted this assignment. 1) Let b_1, \ldots, b_n be n numbers, each chosen independently, uniformly at random from the set $\{-1,+1\}$. Let $X = \sum_{i,j \in [n]} b_i \cdot b_j$ be a random 1 point variable, where [n] denotes the set {1,...,n}. Then, what is the expected value of X? n. n^2 . \sqrt{n} . 0. No, the answer is incorrect. Score: 0 Accepted Answers: n. 2) Let v_1, \ldots, v_n be any n unit vectors in \mathbb{R}^n . Then which of the following is true? 1 point There exists a binary vector $b \in \{-1, 1\}^n$ such that $\|\sum_{i \in [n]} b_i \cdot v_i\| \le \sqrt{n}$. There exists a binary vector $b \in \{-1, 1\}^n$ such that $\|\sum_{i \in [n]} b_i \cdot v_i\| \ge \sqrt{n}$. Both of the above. None of the above. No, the answer is incorrect. Score: 0 Accepted Answers: Both of the above. Let a class of students have 30 boys and 20 girls. For the morning assembly, suppose the class teacher forms a line of all the students in a 1 point random order. What is the probability that all the girls stand before boys in the line? No, the answer is incorrect. Score: 0 Accepted Answers: (50) 20) 4) Consider a stream of m distinct elements $\sigma = \langle a_1, a_2, \dots, a_m \rangle$, where each $a_i \in [n]$. Let $h : [n] \to [n]$ be randomly chosen from a family of **1 point** pairwise independent hash functions. For each $i \in [m]$ and some fixed integer $r \in [n]$, define random variable $Y_{r,i} = 1$, if $h(a_i) \ge r$ and 0 otherwise. Define random variable $X_r = \sum_{i \in [m]} Y_{r,i}$. Then, which of the following is true? $\operatorname{var}(X_r) = \sum_{i \in [m]} \operatorname{var}(Y_{r,i}).$ $E[Y_{r,i}^2] = E[Y_{r,i}]$ for all $i \in [m]$. $\operatorname{var}(X_r) \leq E[X_r].$ All of the above. No, the answer is incorrect. Score: 0 Accepted Answers: All of the above. 5) Consider the following stream of 50 elements $\sigma = \langle 1, 1, 2, 2, \dots, 25, 25 \rangle$. Let $h: \{1, \dots, 25\} \rightarrow \{-1, +1\}$ be randomly chosen from a family of pairwise independent hash functions. Let a_i denote the i-th token in stream. Let random variable $Y=Z^2$, where $Z=\sum_{i\in[50]}h(a_i)$. Then, what is the expected value of Y? 0. 100. O 50. Cannot determine as h is not from a family of 4-wise independent hash functions. No, the answer is incorrect. Score: 0 Accepted Answers: 100.