Course outline
How does an NPTEL online course work?
Week 0
Week 1
Week 2
Week 3
Week 4
Week 5
Week 6
Week 7
Week 8
 Lecture 29: Extremal Set Families
 Lecture 30: Super Concentrators
 Lecture 31: Streaming Algorithms I
 Lecture 32: Streaming Algorithms II
 Week-8 Slides: Extremal set families and super concentrators
 Week-8 Slides: Streaming algorithms

DOWNLOAD VIDEOS

Solutions

Quiz: Week 8: Assignment 8

Week 8: Assignment 8

Feedback For Week 8

LIVE Session

Week 8: Assignment 8

The due date for submitting this assignment has passed.

Due on 2021-10-20, 23:59 IST.

As per our records you have not submitted this assignment.

1) Let b_1, \ldots, b_n be n numbers, each chosen independently, uniformly at random from the set $\{-1,+1\}$. Let $X = \sum_{i,j \in [n]} b_i \cdot b_j$ be a random 1 point variable, where [n] denotes the set {1,...,n}. Then, what is the expected value of X?

n.

 n^2 .

 \sqrt{n} .

0.

No, the answer is incorrect. Score: 0

Accepted Answers:

n.

2) Let v_1, \ldots, v_n be any n unit vectors in \mathbb{R}^n . Then which of the following is true?

1 point

There exists a binary vector $b \in \{-1, 1\}^n$ such that $\|\sum_{i \in [n]} b_i \cdot v_i\| \le \sqrt{n}$.

There exists a binary vector $b \in \{-1, 1\}^n$ such that $\|\sum_{i \in [n]} b_i \cdot v_i\| \ge \sqrt{n}$.

Both of the above.

None of the above.

No, the answer is incorrect. Score: 0

Accepted Answers:

Both of the above.

Let a class of students have 30 boys and 20 girls. For the morning assembly, suppose the class teacher forms a line of all the students in a 1 point random order. What is the probability that all the girls stand before boys in the line?

No, the answer is incorrect. Score: 0

Accepted Answers:

(50) 20)

4) Consider a stream of m distinct elements $\sigma = \langle a_1, a_2, \dots, a_m \rangle$, where each $a_i \in [n]$. Let $h : [n] \to [n]$ be randomly chosen from a family of **1 point** pairwise independent hash functions. For each $i \in [m]$ and some fixed integer $r \in [n]$, define random variable $Y_{r,i} = 1$, if $h(a_i) \ge r$ and 0 otherwise. Define random variable $X_r = \sum_{i \in [m]} Y_{r,i}$. Then, which of the following is true?

 $\operatorname{var}(X_r) = \sum_{i \in [m]} \operatorname{var}(Y_{r,i}).$

 $E[Y_{r,i}^2] = E[Y_{r,i}]$ for all $i \in [m]$.

 $\operatorname{var}(X_r) \leq E[X_r].$

All of the above.

No, the answer is incorrect. Score: 0

Accepted Answers:

All of the above.

5) Consider the following stream of 50 elements $\sigma = \langle 1, 1, 2, 2, \dots, 25, 25 \rangle$. Let $h: \{1, \dots, 25\} \rightarrow \{-1, +1\}$ be randomly chosen from a family of pairwise independent hash functions. Let a_i denote the i-th token in stream. Let random variable $Y=Z^2$, where $Z=\sum_{i\in[50]}h(a_i)$. Then, what is the expected value of Y?

0.

100.

O 50.

Cannot determine as h is not from a family of 4-wise independent hash functions.

No, the answer is incorrect. Score: 0

Accepted Answers: 100.