Assignment 9 Solution

DOWNLOAD VIDEOS

NP = coNP

Week 10

Week 11

Week 12

The due date for submitting this assignment has passed.	Due on 2021-03-24, 2	3:59 IST
As per our records you have not submitted this assignment.		
 Let A be an n × n matrix with {0,1} entries. We define a bipartite graph G_A with 2n vertices {u₁, u₂,, u_n there is an edge between u_i and v_j if and only if A[i,j] is 1. Which of the following two statements is/are true? 	} and $\{v_1, v_2, \dots, v_n\}$ such that	2 points
1. If G_A has a perfect matching then permanent of A is nonzero. 2. If G_A has a perfect matching then determinant of A is nonzero.		
Only 1 Only 2		
O Both 1 and 2 Neither 1 nor 2		
No, the answer is incorrect. Score: 0 Accepted Answers: Only 1		
2) Let kIP be a deterministic interactive protocol that has k rounds of interactions, for some k>1. Which of the	e following is known to be true?	2 points
kIP is a strict subset of dIP kIP is equals to dIP kIP is equals to P		
○ kIP is not equals to dIP		
No, the answer is incorrect. Score: 0		
Accepted Answers: kIP is equals to dIP		
3) Let A be an n × n matrix. Which of the following two statements is/are true? 1. If determinant of A is nonzero then permanent of A is also nonzero.		2 points
2. If permanent of A is nonzero then determinant of A is also nonzero.		
Only 1 Only 2		
O Both 1 and 2		
Neither 1 nor 2		
No, the answer is incorrect. Score: 0 Accepted Answers: Neither 1 nor 2		
4) Consider the following two languages, BPM = { <g> G is an undirected, bipartite graph and G has a perfect matching}, CYCOV = { <g> G is a directed graph and G has a cycle cover}. Which of the following is known to be true?</g></g>		3 points
BPM is logspace reducible to CYCOV but CYCOV is not logspace reducible to BPM.		
CYCOV is logspace reducible to BPM but BPM is not logspace reducible to CYCOV. Both are logspace reducible to each other.		
No, the answer is incorrect.		
Score: 0 Accepted Answers:		
Both are logspace reducible to each other.		
5) Consider the following language, PerParity ={ A A is a matrix and the permanent of A is divisible by 2 }. Which is the smallest known complexity class among following for PerParity?		3 points
○ #P		
○ ⊕P		
O P O NC		
No, the answer is incorrect.		
Score: 0 Accepted Answers: NC		
We define a class EIP which is same as IP except that the prover in this class is only as powerful as class EXP. Which of the following is known to be true?		2 points
IP is a strict subset of EIP		
IP is a strict subset of EIP IP is equals to EIP		
EIP is a strict subset of IP EIP is not equals to IP		
No, the answer is incorrect. Score: 0 Accepted Answers:		
IP is equals to EIP		
7) Which of the following is known to be true? IP[1] is a strict subset of BPP		3 points
○ IP[1] is a strict subset of BPP		
IP[k] = NP, where k > 0 is a constant		
IP[k] = BPP, where k > 1 is a constant		
No, the answer is incorrect. Score: 0 Accepted Answers:		
IP[1] is equals to BPP 8) Assume that there is a polynomial time algorithm to compute permanent of a		1 noin
8) Assume that there is a polynomial time algorithm to compute permanent of a matrix. What can we conclude from this?		1 point
P = NP NP = coNP		
IP = P IP = NP		
No, the answer is incorrect. Score: 0		
Accepted Answers: P = NP		