
CS 746: Riemann Hypothesis and Its Applications

Solutions of Practice Problem Set 1

Question 1

Show that all the rational functions (p(z)q(z) , for some polynomial p(z) and

q(z)) are analytic over a domain in which q(z) 6= 0 at every point.
Answer:

Claim 1. If f and g are analytic over D, then so are f + g, f − g, f.g and
f/g (on all points where g does not become zero).

Proof. Let, f(z) = u1(x, y) + iv1(x, y) and g(z) = u2(x, y) + iv2(x, y).
As f and g are analytic over D, so f and g are differentiable over D, i.e.,

a. ∂u1
∂x = ∂v1

∂y & ∂u1
∂y = −∂v1

∂x , and

b. ∂u2
∂x = ∂v2

∂y & ∂u2
∂y = −∂v2

∂x .

Also f ′ and g′ are continuous over D and so (f + g)′ = f ′ + g′ is. As
∂u1
∂x , ∂u1

∂y , ∂u2
∂x and ∂u2

∂y are continuous, so are ∂(u1+u2)
∂x and ∂(u1+u2)

∂y .
Now observe that,

i. ∂(u1+u2)
∂x = ∂(v1+v2)

∂y , and

ii. ∂(u1+u2)
∂y = −∂(v1+v2)

∂x

Hence, f + g is analytic over D.
Similarly, one can prove the remaining.

The statement given in the question is just a corollary of the above claim.
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Question 2

Show that f(z) = eiz
2

is an entire function.
Answer:
Firstly we need to get the function into the form f(z) = u(x, y) + iv(x, y).
We do this using the definition of the exponential and Euler’s equation.

f(z) = eiz
2

= e−2xyei(x
2−y2) = e−2xy(cos(x2 − y2) + i sin(x2 − y2)).

Now using partial differentiation,

∂u

∂x
= −e−2xy sin(x2 − y2) =

∂v

∂y
,

∂u

∂y
= −e−2xy cos(x2 − y2) = −∂v

∂x
.

So by Cauchy-Riemann equations, the function is analytic whenever these
two equations are satisfied and continuous, which is for all x and y. Hence
the function is entire.

Question 3

Study the analyticity of the following functions: ez and sin(z) = eiz−e−iz

2i .
Answer:
(a) Let us express ez as ez = ex(cos y+i sin y). Now by the argument similar
to the answer of Question 2, it can easily be shown that ez is entire.
(b) Similarly, eiz and e−iz are entire as well. Thus by Claim 1, sin(z) =
eiz−e−iz

2i is also entire.

Question 4

Work out the relationship between absolute convergence and uniform con-
vergence.
Answer:
For a series, absolute convergence implies uniform convergence and this is
because

∑
n≥1 an ≤

∑
n≥1 |an|.

However the converse is not true. For example, let us consider the fol-
lowing alternating harmonic series

∞∑
n=1

(−1)n−1

n
.
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This series is alternating and 1
n is monotone decreasing to 0, so by Leibniz

Alternating Series Test, the above series converges. It is clear that above
series is not absolutely convergent. Let us now check the condition for
uniform convergence for the above series.

2n∑
k=1

(−1)k−1

k

= 1− 1

2
+ · · ·+ 1

2n− 1
− 1

2n

= (1 +
1

2
+ · · ·+ 1

2n− 1
+

1

2n
)− 2(

1

2
+

1

4
+ · · ·+ 1

2n
)

=

2n∑
k=1

1

k
− 2

n∑
k=1

1

2k

=
n∑

k=1

1

n+ k
= ε2n

Observe the Riemann (lower) sum for integrating f(x) = 1
x is

1

n

n∑
k=1

f(1 +
k

n
) =

n∑
k=1

1

n+ k
= ε2n.

Thus we get the following,

lim
n→∞

ε2n =

∫ 2

1

1

x
dx = log 2.

This shows that the series under consideration is uniformly convergent.

Question 5

Let f be a power series with radius of convergence R, then show that for
any z such that |z| > R, f is absolutely divergent.
Answer:
Let f(z) =

∑
k≥0 akz

k, and |z| = r, R < s < r.

then the sequence {|ak|sk} does not converge to 0.
Therefore, |ak|sk ≥ ε > 0, which implies

|ak|rk = |ak|sk(r/s)k ≥ ε(r/s)k

and this completes the proof.
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Question 6

Show that given the absolutely convergent series

A =
∞∑
n=0

αn, B =
∞∑
n=0

βn

we have the absolutely convergent series

AB =

∞∑
n=0

γn, γn =

n∑
j=0

αjβn−j .

Answer:
Let, An =

∑n
k=0 |αk|, Bn =

∑n
k=0 |βk| and Cn =

∑n
k=0 |γk|. Then,

Cn = |α0β0|+ |α0β1 + α1β0|+ · · ·+ |α0βn + α1βn−1 + · · ·+ αnβ0|
≤ |α0||β0|+ (|α0||β1|+ |α1||β0|) + · · ·+ (|α0||βn|+ |α1||βn−1|+ · · ·+ |αn||β0|)
= |α0|Bn + |α1|Bn−1 + · · ·+ |αn|B0

≤ |α0|Bn + |α1|Bn + · · ·+ |αn|Bn

= (|α0|+ |α1|+ · · ·+ |αn|)Bn = AnBn ≤ αβ

where α = limAn, β = limBn. Hence, {Cn} is bounded. Note that {Cn} is
increasing and thus {Cn} is a convergent sequence.

Question 7

If D be a domain bounded by a contour C for which Cauchy’s theorem is
valid and f is continuous on C and regular (analytic and single-valued) in
D, then show that |f | ≤ M on C implies |f | ≤ M in D and if |f | = M in
D, then f is a constant.
Answer:
(a) Let z0 ∈ D, n a positive integer. Then

|f(z0)|n =
∣∣∣ 1

2πi

∫
C

{f(z)}ndz
z − z0

∣∣∣
≤ lcM

n

2πδ

where lc is the length of C, δ is the distance of z0 from C. As n → ∞,
|f(z)| ≤M .
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(b) If |f(z0)| = M , then f is a constant. Applying Cauchy’s integral
formula to d

dz [{f(z)}n], we get

|n{f(z0)}n−1.f ′(z0)| =
∣∣∣ 1

2πi

∫
C

fndz

(z − z0)2
∣∣∣

≤ lcM
n

2πδ2

so that

|f ′(z0)| ≤
lcM

2πδ2
1

n
→ 0, as n→∞.

Hence, |f ′(z0)| = 0.
(c) If |f(z0)| = M and |f ′(z0)| = 0, then f

′′
(z0) = 0, for

d2

dz2
[{f(z)}n] = n(n− 1){f(z)}n−2{f ′(z)}2 + n{f(z)}n−1f ′′(z).

At z0, we have
d2

dz2
[{f(z)}n] = nfn−1(z0)f

′′
(z0),

so that

|nMn−1f
′′
(z0)| =

∣∣∣ 2!

2πi

∫
C

{f(z)}ndz
(z − z0)3

∣∣∣
≤ 2!lc

2πδ3
Mn,

and letting n → ∞, we see that f
′′
(z0) = 0. By a similar argument, we

prove that all derivatives of f vanish at z0 (an arbitrary point of D). Thus
f is a constant.
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