CS 746: Riemann Hypothesis and Its Applications Practice Problem Set 1

- 1. Show that all the rational functions $(\frac{p(z)}{q(z)})$, for some polynomial p(z) and q(z) are analytic over a domain in which $q(z) \neq 0$ at every point.
- 2. Show that $f(z) = e^{iz^2}$ is an entire function.
- 3. Study the analyticity of the following functions: e^z and $sin(z) = \frac{e^{iz} e^{-iz}}{2i}$.
- 4. Work out the relationship between absolute convergence and uniform convergence.
- 5. Let f be a power series with radius of convergence R, then show that for any z such that |z| > R, f is absolutely divergent.
- 6. Show that given the absolutely convergent series

$$A = \sum_{n=0}^{\infty} \alpha_n, \ B = \sum_{n=0}^{\infty} \beta_n$$

we have the absolutely convergent series

$$AB = \sum_{n=0}^{\infty} \gamma_n, \ \gamma_n = \sum_{j=0}^{n} \alpha_j \beta_{n-j}.$$

7. If D be a domain bounded by a contour C for which Cauchy's theorem is valid and f is continuous on C and regular (analytic and singlevalued) in D, then show that $|f| \leq M$ on C implies $|f| \leq M$ in D and if |f| = M in D, then f is a constant.

(Hints: Apply Cauchy's Integral Formula to $f(z)^n$ for the first part and to $\frac{d}{dz}[f(z)^n]$ for the second part)