

Parallel

 \bigcirc

 \bigcirc

Score: 0

2N-2

2N-1No, the answer is incorrect.

Accepted Answers: 2N-3

9) On an N imes N mesh, the Shearsort algorithm runs in $\Theta(___)$ time.

lgorithms Uni	t 9 - Week 08: Connec https://onlinecourses-archive.nptel.ac.in/r
Interconnection	
Networks Algorithms	✓ DF
Interaction Session	No, the answer is incorrect. Score: 0
Week 10.	Accepted Answers:
Interconnection Networks Algorithms	
Week 11:	5) An undirected graph $G = (V, E)$ has 30 vertices, 38 edges and 12 components. In the star graph that defines 1 point the connected components of G , the number of edges that are not self-loops is
Interconnection Networks Algorithms	3 0
Neek 12: Parallel	18
Complexity Theory	□ 12 <u></u>
	38
	No, the answer is incorrect.
	Score: 0
	18
	6) From an undirected 1 point
	graph $G = (V, E)$ with $E = \{AB, AC, AF, BD, BF, CD, CH, DF, DH, DJ, FJ, HJ, HL, JK, JL, KL\}$, sets $\{A, D, K\}$, $\{B, J, C\}$, $\{F, L\}$, $\{H\}$ are successively removed and inserted back in the reverse order. Each vertex is given the least colour in $\{1, 2, 3, 4, 5, 6\}$ that is not in its neighbourhood, when it is inserted back. What is the relevant to be a successively removed and inserted back in the reverse order.
	Colour that is given to D? 2
	6
	No, the answer is incorrect. Score: 0
	Accepted Answers: 4
	7) The edge set E of an undirected graph $G = (V, E)$ with $V = \{A, B, C, D, F, H, J\}$ is partitioned into two 1 point disjoint sets E_1 and E_2 , and the subgraphs induced by E_1 and E_2 on V are vertex coloured so that
	vertices A, B, C, D, F, H, J get colours of $1, 2, 3, 1, 3, 4, 1$ and $1, 2, 1, 3, 1, 1, 2$ respectively in the two colourings. Combining the two colourings gives a vertex colouring of G .
	6
	4
	3
	7
	No, the answer is incorrect.
	Score: 0
	6
	8) For an algorithm that runs on an $N \times N$ mesh, the initial contents of processor (1,1) will not affect the end-of- the-step-contents of processor (N, N) for steps.
	2N-4
	-2N-3

1 point

10) In an N-node linear array, in which every processor holds a bit, odd even transposition sort is run. The rightmost **1** pole 1 occurs at position 8. It will reach its destination in step number ______.

N-8NN-1N-7No, the answer is incorrect. Score: 0 Accepted Answers: N-7

11) In a list, the logical order of the vertices is ABCDEFGH. The list is to be ranked from A. The vertices A, B, C, D, E, **1** point F, G, H have weights of 4, 6, 2, 3, 1, 2, 4, 9 respectively. Vertices C, E and G are spliced out as is done in the list contraction we studied in Lecture 13. What are the new ranks of A, B, D, F and H?

```
4, 6, 5, 3, 13
4, 8, 5, 6, 9
4, 6, 3, 3, 1
4, 6, 3, 1, 9
No, the answer is incorrect.
Score: 0
Accepted Answers:
4, 6, 5, 3, 13
```

Previous Page

End