Courses » Parallel Algorithms Announcements Course Ask a Question Progress FAQ ma

Unit 8 - Week 07: Cole's Merge Sort, Sorting Lower Bound, Connected Components

Register for
Certification exam

Course
 outline

How to access
the portal

Week 01: Models
of Computation

Week 02:
Performance of parallel algorithms,Basic techniques

Week 03: Basic
Techniques
Week 04: Comparator Networks; List Colouring

Week 05: An
Optimal List Ranking algorithm

Week 06: Applications of Optimal List Ranking algorithm, Expression Tree Evaluation, Merging and Cole's Merge

Assessment 7

The due date for submitting this assignment has passed.
As per our records you have not submitted this Due on 2019-03-20, 23:59 IST. assignment.

1) Which of the following is a 3-cover of 124578101113141517181 point 2022242628251114182428
271114182228
151014182628151013171826

No, the answer is incorrect.
Score: 0
Accepted Answers:
271114182228
2) Three consecutive intervals of $S_{t-1}(u)$ contain at most \qquad elements 1 point of $S_{t}(u)$, for all $t>0$.
(Pick the smallest of the correct options, if more than one option is correct.)

No, the answer is incorrect.
Score: 0
Accepted Answers:
7
© 2014 NPTEL - Privacy \& Terms - Honor Code - FAQs -
NPTEI Nemanpopamom
Technology Enhanced Learning

- Lecture 1: Cole's Merge Sort: Details
- Lecture 2: Analysis of Cole's Merge Sort; Lower bound for sorting
- Lecture 3: Sorting Lower bound; Connected Components

Quiz :
Assessment 7
Week 08:
Connected
Components,
Vertex Colouring
and
Interconnection
Networks
Algorithms

Week 09:
Interconnection
Networks
Algorithms

Interaction
Session

Week 10:
Interconnection
Networks
Algorithms
Week 11:
Interconnection
Networks
Algorithms
Week 12:
Parallel
Complexity
Theory

$$
C_{t-1}(u) \text { is a 3-cover of } S_{t-1}(v) \text { and } S_{t-1}(w)
$$

$$
C_{t-1}(u) \text { is a 3-cover of } S_{t}(v) \text { and } S_{t}(w)
$$

$$
C_{t}(u) \text { is a 3-cover of } S_{t-1}(v) \text { and } S_{t-1}(w)
$$

$$
C_{t}(u) \text { is a 3-cover of } S_{t}(v) \text { and } S_{t}(w)
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$C_{t-1}(u)$ is a 3-cover of $S_{t}(v)$ and $S_{t}(w)$
4) At the end of stage 12, the cache and sample sizes of a level 4 node 1 point are \qquad , respectively.

No, the answer is incorrect.
Score: 0
Accepted Answers:
16 and 2
5) When Cole's merge sort is run on an array of n elements, the total size of 1 point cache and sample arrays of all live nodes put together is \qquad _.

```
    \Theta(1)
    \Theta(n)
    \Theta(log}n
    \Theta(n/log}n
```

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
\Theta(n)
$$

6) With p processors on a CREW PRAM, $1 \leq p \leq n$, Cole's merge sort sorts 1 point an array of n elements in \qquad time.
```
    \Theta(1)
    \Theta(log}n
    \Theta(n\operatorname{log}n/p)
```

$$
\Theta(n / p+\log n)
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\Theta(n \log n / p)$
7) If the number of comparisons that any algorithm that sorts n items in $\mathrm{t} \mathbf{1}$ poinc comparison steps must necessarily perform is at least $t n^{1+1 / t} / e-t n$, then which of the following is the strongest implied lower bound on the time complexiew of any algorithm that sorts n items using $n^{4 / 3}$ processors?
$\Omega(\log n)$

$\Omega(\log \log n)$
$\Omega(1)$

$$
\Omega\left(n^{1 / 3}\right)
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\Omega(1)$
8) In a rooted tree with node r as the root, nodes a, b and c as the children 1 point of the root, nodes d and e as the children of b, and nodes f and g as the children of d, every node checks if its grandparent and parent are the same and marks the grandparent if the check fails. Then \qquad are exactly the nodes that do not yet know that they are in a non-star graph.

d, e, f, and g
No, the answer is incorrect.
Score: 0
Accepted Answers:
a and c
9) When a rooted tree of height $2 x-1$ is subjected to one step of pointer jumping, the height of the resultant tree would be \qquad _.

$$
x-1
$$

$$
x+1
$$

$$
x / 2
$$

No, the answer is incorrect.

Score: 0
Accepted Answers:
x
10)When a star graph hooks on to a tree of height h, as in the ARBITRARY 1 point CRCW PRAM connected components algorithm, the height of the resultant tree would be \qquad .

No, the answer is incorrect.
Score: 0
Accepted Answers:
$h+2$

