

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

In association with
NASSCOM®
Funded by

Parallel Algorithms - - Unit 8 - Week 07: Cole's ...

 $\Theta(n/p + \log n)$ No, the answer is incorrect. Score: 0 Accepted Answers: $\Theta(n \log n/p)$

7) If the number of comparisons that any algorithm that sorts n items in t **1** point comparison steps must necessarily perform is at least $tn^{1+1/t}/e - tn$, then which of the following is the strongest implied lower bound on the time complexing of any algorithm that sorts n items using $n^{4/3}$ processors?

Accepted Answers: $\Omega(1)$	
Score: 0	
No. the answer is incorrect.	
$\Omega(n^{1/3})$	
$\Omega(1)$	
	202
$\Omega(\log \log n)$	
	202
$\Omega(\log n)$	
•	

8) In a rooted tree with node r as the root, nodes a, b and c as the children **1** point of the root, nodes d and e as the children of b, and nodes f and g as the children of d, every node checks if its grandparent and parent are the same and marks the grandparent if the check fails. Then ______ are exactly the nodes that do not yet know that they are in a non-star graph.

a and c
a, b and c
r, a, b and c
0
d, e, f, and g
No, the answer is incorrect. Score: 0
Accepted Answers:
a and c

9) When a rooted tree of height 2x-1 is subjected to one step of pointer **1** point jumping, the height of the resultant tree would be _____.

x-1x+1x/2x

No, the answer is incorrect.

Score: 0 Accepted Answers:	
¹⁰ /When a star graph hooks on to a tree of height h, as in the ARBITRARY 1 point CRCW PRAM connected components algorithm, the height of the resultant tree would be	
h-1	
🔘 h	
h+1	
● h+2	G
No, the answer is incorrect.	<u>6000</u>
Score: 0	₩
Accepted Answers: h+2	<u>R</u>
Previous Page	End