

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

In association with
NASSCOM®
Funded by

Week 08:	No, the answer is incorrect. ce De Score: 0		
Connected Components, Vertex Colouring	Accepted Answers:		
and	T-D butterny		
Interconnection Networks Algorithms	4) G_1 is a graph with 8 vertices and 13 edges. G_2 is a graph with 7 vertices and 16 edges. 1 point The cross product of G_1 and G_2 has edges.		
Week 09:	91		
Interconnection Networks Algorithms	 219 128 		
Interaction Session	208 No, the answer is incorrect.		
	Score: 0		
Week 10: Interconnection Networks	Accepted Answers: 219		
Algorithms	5) A $3 imes 5$ mesh cannot be embedded in which of the following networks? 1 point		
Lecture 1: Mesh of Trees,	0		
Hypercube	the cross product of H_2 and H_2		
Lecture 2: Hypercube cont'd	the cross product of H_2 and H_3		
Lecture 3:	the cross product of H_2 and H_2		
Hypercube cont'd, butterfly network	the cross product of H_1 and H_4		
Lecture 4:	No the answer is incorrect		
Butterfly, CCC and Benes	Score: 0		
Networks	Accepted Answers: the cross product of H_2 and H_2		
Quiz : Assessment 10	6) An H_3 is to be renamed so that node $u = 4$ gets renamed $u' = 6$ and dimensions 1, 2, 3 1 point		
Week 11: Interconnection Networks	become dimensions 3, 1, 2 respectively, where dimension 1 is the most significant, and dimension 3 is the least significant. What is the new name of vertex 3?		
Algorithms			
Week 12: Parallel			
Complexity Theory	7		
	No, the answer is incorrect. Score: 0		
	Accepted Answers:		
	1		
	7) A complete binary tree of 15 nodes is not embeddable in H_4 , because if it were, the 1 point number of nodes with the same parity as the root would be, and the remaining nodes of the tree would have the appreciate parity a contradiction		
	0 10		
	6		
	No, the answer is incorrect.		

Score: 0	
Accepted Answers:	
5	
8) The number of edges in a 3-D CCC is	1 point
12	
48	
O 36	~
24	
No, the answer is incorrect.	~~~
Score: 0	~
Accepted Answers:	
36	~
9) In an r -D butterfly, there is a path of length from any node in the 0-th column to any node in the r -th column.	1 poin
r-1	
•	
2r	
•	
r+1	
No, the answer is incorrect.	
Accented Answers:	
r	
10)In a 1-dimensional Benes-network, each node in the leftmost column has two inputs and	1 noin
each node in the rightmost column has two outputs. Inputs 1, 2, 3 and 4 have to be connected	to
butputs 2, 4, 1, and 3 respectively. The inputs and outputs are numbered 1,2, 3 and 4 top to be	ottom.
Each node of the network is a 2×2 switch. If the top left switch is configured straight, then the node of the hottom, to connect the input top to bottom, to connect the input top top top top top top top top top to	e nodes uts to the
corresponding outputs using edge-disjoint paths.	
straight and straight	
Cross and cross	
Cross and straight	

No, the answer is incorrect. Score: 0

Accepted Answers: cross and cross

Previous Page

End

Parallel Algorithms - - Unit 12 - Week 10: Interc...

R
ß
ß
R