

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

	Score: 0	
Week 08: Connected Components,	Ce De Accepted Answers: N-1	
Vertex Colouring	2) Consider a \sqrt{N} \times \sqrt{N} much in which every processor holds a bit. Divide the mach 1 point	
and Interconnection	3) Consider a $\sqrt{10} \times \sqrt{10}$ mesh in which every processor holds a bit. Divide the mesh in 1 point into $N^{1/4}$ blocks of size $N^{3/8} \times N^{3/8}$. Suppose every dirty row in the mesh is within a band of	
Networks Algorithms	height $N^{1/8}$. The number of dirty horizontal slices is at most	
Week 00:		
Interconnection	0 2	
Networks		
Algorithms	$N^{1/8}$	
Lecture 01:		
Sorting on a 2D	None of the above	
mesn	No, the answer is incorrect.	
Lecturer 02: Sorting Offline	Score: 0	
routing on a 2D	Accepted Answers:	
mesh	2	
Lecturer 03:	4) In a linear array of size N every processor holds an integer. The integers are in sorted 1 point	
Sorting on a 3D	order, except for r of them, all of which occur within a window of size $k \geq r.$ If we use Odd Even	
	Transposition sort on this linear array, the array will be sorted within number of steps.	
Quiz : Assessment 9		
	r	
Interaction Session		
50331011	k	
Week 10:		
Interconnection	k+r	
Algorithms		
	k-r	
Week 11:	No the ensurer is incompat	
Networks	No, the answer is incorrect.	
Algorithms		
Wook 12	k	
Parallel		
Complexity	5) In an $IV \times IV^2$ 2D-mesh, every processor holds a packet that has a unique destination 1 point	
Theory	autress. A processor can in each step receive (resp., send) a message each from (resp., to) each of its neighbours, in addition to performing a constant amount of computation in its local memory. If the	
	source-destination pairs are known a priori, and any amount of offline computation is allowed, then the	
	packets will be delivered to the destinations in time.	

$$\Theta(\log N)$$

$$\Theta(N)$$

$$\Theta(N^3)$$

$$\Theta(N^2)$$

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$\Theta(N^2)$$

6) Given is a bipartite graph G = (U, V, E) of a maximum vertex degree of 17. A new **1** point vertex s is added to G and is made adjacent to every node of odd degree in G to get G + s, which is Euler. An Euler circuit of G + s is found, the edges of which are then labelled 0 and 1 alternately. G_0 and G_1 are the subgraphs of G defined respectively by the edges in E of labels 0 and 1 respectively. Select the least of the following numbers that the maximum vertex degree of G_0 and G_1 is guaranteed to not exceed.

 17 16 	ß
 9 8 	
No, the answer is incorrect. Score: 0	
Accepted Answers: 9	2
7) The bisection width of a network of N nodes is the least number of edges that must be removed to partition it into two networks of at most $\lceil N/2 \rceil$ nodes each. The bisection width of a 5×5 mesh is	1 poi
5 6 10 25	
No, the answer is incorrect. Score: 0 Accepted Answers: 6	
8) The diameter of a $5 \times 5 \times 5$ mesh is 12 15 14 125	1 point
No, the answer is incorrect. Score: 0 Accepted Answers: 12	
9) The bisection width of a network of N nodes is $N^{3/8}.$ Sorting of N items on this network will take Ω () steps. (If more than one option is correct, then pick the largest among t	1 point hem.)

\odot	
	$N^{1/2}$
\odot	
	$N \log N$
\odot	
	$N^{3/8}$
\odot	
	$N^{5/8}$

No, the answer is incorrect. Score: 0	
Accepted Answers: $N^{5/8}$	
10) On an $N^{1/3} \times N^{1/3} \times N^{1/3}$ 3D-mesh, in which every processor holds a bit, each zx -plane is sorted in zx order, and then each yz -plane is sorted in yz order. The of dirty xy planes is at most	1 point n the number
• o	
1	
$N^{1/3}$	
Score: 0	뮲
Accepted Answers: 2	
Previous Page	End