Unit 10 - Week 09: Interconnection Networks Algorithms

Register for
Certification exam

Course
outline

How to access
the portal

Week 01: Models
of Computation

Week 02:
Performance of parallel algorithms,Basic techniques

Week 03: Basic
Techniques
Week 04:
Comparator
Networks; List
Colouring
Week 05: An
Optimal List
Ranking algorithm

Week 06: Applications of Optimal List Ranking algorithm, Expression Tree Evaluation, Merging and Cole's Merge

Assessment 9

The due date for submitting this assignment has passed.
As per our records you have not submitted this Due on 2019-04-03, 23:59 IST. assignment.

1) Consider an $\sqrt{N} \times \sqrt{N}$ mesh in which every processor holds a bit. Divide the mesh into 1 point $N^{1 / 4}$ blocks of size $N^{3 / 8} \times N^{3 / 8}$. Sort each block in snakelike order. Perform an $N^{1 / 8}$-way unshuffle of the columns. The number of 1's in a block can differ by at most \qquad from the number of 1's in any other block in the same horizontal slice.

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
N^{1 / 8}
$$

2) In a linear array of size N every processor holds a packet that has a unique destination 1 point address. A processor can, in each step, receive (resp., send) a message each from (resp., to) each of its neighbours, in addition to performing a constant amount of computation in its local memory. The packets will be delivered to the destinations in \qquad time.
N
© 2014 NPTEL - Privacy \& Terms - Honor Code - FAQs -
NPTEL
National Programme on Technology Enhanced Learning

3) Given is a bipartite graph $G=(U, V, E)$ of a maximum vertex degree of 17 . A new 1 point vertex s is added to G and is made adjacent to every node of odd degree in G to get $G+s$, which is Euler. An Euler circuit of $G+s$ is found, the edges of which are then labelled 0 and 1 alternately. G_{0} and G_{1} are the subgraphs of G defined respectively by the edges in E of labels 0 and 1 respectively. Select the least of the following numbers that the maximum vertex degree of G_{0} and G_{1} is guaranteed to not exceed.1716
-8
No, the answer is incorrect.
Score: 0
Accepted Answers:
9
4) The bisection width of a network of N nodes is the least number of edges that must be removed to partition it into two networks of at most $\lceil N / 2\rceil$ nodes each. The bisection width of a 5×5 mesh is \qquad _.
No, the answer is incorrect.
Score: 0
Accepted Answers:
6
5) The diameter of a $5 \times 5 \times 5$ mesh is \qquad .

No, the answer is incorrect.
Score: 0
Accepted Answers:
12
9) The bisection width of a network of N nodes is $N^{3 / 8}$. Sorting of N items on this network 1 point will take Ω (\qquad) steps. (If more than one option is correct, then pick the largest among them.)

$$
N^{1 / 2}
$$

$N \log N$

$N^{3 / 8}$
$N^{5 / 8}$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$N^{5 / 8}$
100n an $N^{1 / 3} \times N^{1 / 3} \times N^{1 / 3}$ 3D-mesh, in which every processor holds a bit, 1 point each $z x$-plane is sorted in $z x$ order, and then each $y z$-plane is sorted in $y z$ order. Then the number of dirty $x y$ planes is at most

No, the answer is incorrect.
Score: 0
Accepted Answers:
2

Previous Page
End

