Mentor Course outline Week 0:Prerequisite Week 1: Introduction to Randomized Algorithms Week 2: Probability Review Week4: Probabilistic Method Week 5: Markov Chains Electrical Networks Ouiz: Assignment 6 Weekly feedback form for Week 7: Number Theoretic Week 8: Graph Theoretic Week 9 : Approximate Week 10: Randomization and No, the answer is incorrect. Accepted Answers: If for some T and every $x,y\in S$, $Pr(X_T=Y_T|X_0=x,Y_0=y)\geq \epsilon$, then $\tau(1-\epsilon)\leq T$. Score: 0 Week 11 : Computational Week 12 : Summary **Download Videos** Cover Time Rapid Mixing week 6 **Algorithms** Algorithms Counting **Data Structures** Complexity Week 6: Markov Chains-II Week3: Moments and **Deviations** course work? How does an NPTEL online NPTEL » Randomized Algorithms ## Unit 8 - Week 6: Markov Chains-II | The due date for submitting this assignment has passed. As per our records you have not submitted this assignment. | Due on 2020-03-11, 23:59 | IST. | |---|--|--------| | 1) Consider the complete graph K_n on n vertices where $n \geq 3$. Assume $u \neq v$. The commute time $C_n(u,v)$ is | for an arbitrarily chosen pair of vertices | 1 poin | | None of the other choices are correct | | | | $\frac{2}{n}$ | | | | $\frac{n}{2}$ | | | | 2(n-1) | | | | No, the answer is incorrect. Score: 0 Accepted Answers: | | | | 2(n-1) | | | | 2) Consider the cycle graph on C_n on n vertices where $n \ge 5$. Let C_{uv} be commute time for an ar $u \ne v$. Which of the following statements are true? | bitrarily chosen pair of vertices (u, v) . Assume | 1 poin | | C_{uv} is maximum if u and v are adjacent. | | | | C_{uv} is at least $n \log n$. | | | | C_{uv} is at most $ rac{n^2}{2}$. | | | | C_{uv} is at least $2(n-1)$. | | | | No, the answer is incorrect. Score: 0 Accepted Answers: | | | | C_{uv} is at most $\frac{n^2}{2}$. C_{uv} is at least $2(n-1)$. | | | | 3) Let C_{uv} be the commute time and h_{uv} be the hitting time for an arbitrary pair of vertices u and v in | a graph G_{\cdot} Which of the following statements | 1 poin | | are true?. | | | | $h_{uv} = h_{vu}$ | | | | $C_{uv} = C_{vu}$ | | | | $C_{uv} = h_{uv} + h_{vu}$ | | | | $h_{uv} = h_{vu}$ if (u, v) is an edge in G .
No, the answer is incorrect. | | | | Score: 0 Accepted Answers: $C_{uv} = C_{vu}$ | | | | $C_{uv} = b_{uv} + h_{vu}$ | | | | 4) Consider the random walk on the complete the bipartite graph $K_{n,n}$. Let u,v be vertices such that $C_{u,v}$ is | $u \neq v$ and (u, v) is not an edge. The cover time | 1 poin | | n | | | | \bigcirc $2n$ | | | | \bigcirc 3n | | | | \bigcirc 4n | | | | No, the answer is incorrect.
Score: 0 | | | | Accepted Answers: 4n | | | | 5) Which of the following graphs have the largest cover time amongst them? (Assume n to be suitably | / large, say greater than 1000.) | 1 poin | | The complete bipartite graph $K_{n,n}$ | | | | The line graph on n vertices | | | | The complete graph on 2n vertices | | | | The lollipop graph form by attaching the complete graph K_n to a line graph on n vertices No, the answer is incorrect. | | | | Score: 0 Accepted Answers: | | | | The lollipop graph form by attaching the complete graph K_n to a line graph on n vertices 6) Consider the the sample space $\{1, 2, \dots, 10\}$. Let D_1 be the uniform distribution on S . Let D_2 be | the distribution given by the following vector. | 1 poin | | $D_2=(\frac{1}{2},\frac{1}{18},\frac{1}{18},\frac{1}{18},\frac{1}{18},\frac{1}{18},\frac{1}{18},\frac{1}{18},\frac{1}{18},\frac{1}{18},\frac{1}{18})$. The variation distance between D_1 and D_2 is | | | | $\frac{1}{5}$ | | | | $\frac{1}{5}$ $\frac{2}{5}$ | | | | 3
5 | | | | | | | | No, the answer is incorrect.
Score: 0 | | | | Accepted Answers: | | | | 7) Consider two distributions D_1 and D_2 on a sample space S . Let $E \subseteq S$ be an event such that the 0.5 and the probability of E under D_2 is 0.3. Which of the following statements are true? | probability of E under the distribution D_1 is | 1 poin | | | | | | The variation distance between D_1 and D_2 is less than 0.4 | | | | The variation distance between D_1 and D_2 is less than 0.1 | | | | The variation distance between D_1 and D_2 is at least 0.2 The variation distance between D_1 and D_2 is at least 0.4 | | | | No, the answer is incorrect. Score: 0 | | | | Accepted Answers: The variation distance between D_1 and D_2 is at least 0.2 | | | | | ving time for the Markey chain M. Which of the | 1 poin | | 8) Let $Z_t = (X_t, Y_t)$ be a coupling for a Markov chain M_t on a state space S . Let $\tau(\cdot)$ denote the mix | xing time for the Markov chain M_t . Which of the | | | 8) Let $Z_t = (X_t, Y_t)$ be a coupling for a Markov chain M_t on a state space S . Let $\tau(\cdot)$ denote the mix following statements are necessarily true? | xing time for the Markov chain M ₁ . Which of the | | | following statements are necessarily true? | | | | following statements are necessarily true? | | |