Course outline

Week 0:Prerequisite

Week 1: Introduction to Randomized Algorithms

Week 2: Probability Review

Week4: Probabilistic Method

Week3: Moments and

Week 5: Markov Chains

Week 6: Markov Chains-II

Week 7: Number Theoretic

Week 8: Graph Theoretic

Week 9 : Approximate

Data Structures

Complexity

proofs - II

proofs - III

week 11

Week 12 : Summary

Download Videos

LFKN Protocol

Week 10: Randomization and

Week 11 : Computational

Probabilistically checkable

Probabilistically checkable

Probabilistically checkable

Ouiz: Assignment 11

Weekly feedback form for

Deviations

Algorithms

Algorithms

Counting

course work?

How does an NPTEL online

About the Course

Ask a Question

Progress

Mentor

NPTEL » Randomized Algorithms Announcements

Unit 13 - Week 11: Computational Complexity

Accepted Answers:

 $2^n + 2^{n^2}$

The due date for submitting this assignment has passed. As per our records you have not submitted this assignment.	Due on 2020-04-15, 23:59	IST.
Which of the following bit strings are Walsh-Hadamard (WH) codewords?		1 poin
00001111		
11111111		
01011011		
O 01011010		
No, the answer is incorrect. Score: 0		
Accepted Answers: 01011010		
2) The number of WH codewords of length 256 is?		1 point
○ 8 ○ 3		
2 ²⁵⁶ 256		
No, the answer is incorrect.		
Score: 0 Accepted Answers:		
256		
3) The WH encoding of the string 110 is		1 point
11110000		
O 10101110		
11000011		
00111100		
No, the answer is incorrect. Score: 0 Accepted Answers:		
00111100		
 Let x and y be two distinct strings of length n. Let d be the number of bit positions where the WH encodings of of d is 	x and y differs. The minimum value	1 point
O1		
○ n		
2^n		
2^{n-1}		
No, the answer is incorrect. Score: 0		
Accepted Answers: 2 ⁿ⁻¹		
5) Let π be a PCP proof, consisting of the Walsh-Hadamard encoding of a satisfying assignment u and the Walsh-set of satisfiable quadratic equation on n variables. The length of π is	Hadamard encoding of $u \otimes u$, of a	1 point
poly(n)		
2^{n^2}		
$\binom{\circ}{2^n}$		
$2^n + 2^{n^2}$		
No, the answer is incorrect. Score: 0		