Course outline Week 0:Prerequisite Week 1: Introduction to Randomized Algorithms Week 2: Probability Review Week4: Probabilistic Method Week3: Moments and Week 5: Markov Chains Week 6: Markov Chains-II Week 7: Number Theoretic Week 8: Graph Theoretic Week 9 : Approximate Data Structures Complexity proofs - II proofs - III week 11 Week 12 : Summary **Download Videos** LFKN Protocol Week 10: Randomization and Week 11 : Computational Probabilistically checkable Probabilistically checkable Probabilistically checkable Ouiz: Assignment 11 Weekly feedback form for Deviations Algorithms Algorithms Counting course work? How does an NPTEL online **About the Course** Ask a Question **Progress** Mentor ## NPTEL » Randomized Algorithms Announcements ## Unit 13 - Week 11: Computational Complexity Accepted Answers: $2^n + 2^{n^2}$ | The due date for submitting this assignment has passed. As per our records you have not submitted this assignment. | Due on 2020-04-15, 23:59 | IST. | |--|---|---------| | Which of the following bit strings are Walsh-Hadamard (WH) codewords? | | 1 poin | | | | | | 00001111 | | | | 11111111 | | | | 01011011 | | | | O
01011010 | | | | No, the answer is incorrect.
Score: 0 | | | | Accepted Answers:
01011010 | | | | 2) The number of WH codewords of length 256 is? | | 1 point | | ○ 8
○ 3 | | | | | | | | 2 ²⁵⁶ 256 | | | | No, the answer is incorrect. | | | | Score: 0 Accepted Answers: | | | | 256 | | | | 3) The WH encoding of the string 110 is | | 1 point | | 11110000 | | | | O
10101110 | | | | | | | | 11000011 | | | | 00111100 | | | | No, the answer is incorrect. Score: 0 Accepted Answers: | | | | 00111100 | | | | Let x and y be two distinct strings of length n. Let d be the number of bit positions where the WH encodings of of d is | x and y differs. The minimum value | 1 point | | O1 | | | | ○ n | | | | 2^n | | | | 2^{n-1} | | | | No, the answer is incorrect.
Score: 0 | | | | Accepted Answers: 2 ⁿ⁻¹ | | | | | | | | 5) Let π be a PCP proof, consisting of the Walsh-Hadamard encoding of a satisfying assignment u and the Walsh-set of satisfiable quadratic equation on n variables. The length of π is | Hadamard encoding of $u \otimes u$, of a | 1 point | | | | | | poly(n) | | | | 2^{n^2} | | | | $\binom{\circ}{2^n}$ | | | | | | | | $2^n + 2^{n^2}$ | | | | No, the answer is incorrect.
Score: 0 | | |