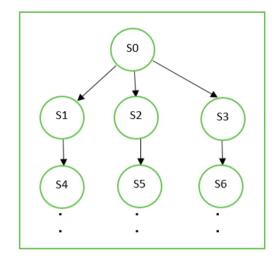
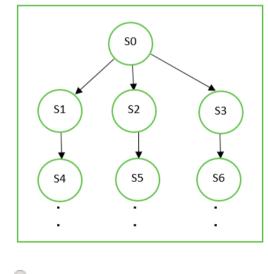
burses » Embedded S	ystems Design Verification and Test
Jnit 7 - Mode	Announcements Course Ask a Question Progress Mentor FAQ
Course outline	Assignment-6
How to access the portal	The due date for submitting this assignment has passed.Due on 2018-09-12, 23:59 IST.As per our records you have not submitted this assignment.
Introduction and Modeling	1) Which of the following equivalences is wrong for the temporal operators? 1 point
Modeling and Synthesis issues Architectural	
Synthesis of Hardwares	 ¬EFφ= AG¬φ No, the answer is incorrect. Score: 0
System-level Design Temporal Logic	Accepted Answers: $EF\varphi = \neg AF \neg \varphi$
Model Checking	2) Which of the following sets is an adequate set of temporal operators? 1 point
 Equivalence between CTL formulas Model Checking Algorithm 	 EX, AU EX, AU, and EU AG, EG, and AF AG and EG
Quiz : Assignment-6	No, the answer is incorrect.
BDD and Symbolic Model Checking	Score: 0 Accepted Answers:
Introduction to Digital Testing	 <i>EX</i>, <i>AU</i>, and <i>EU</i> 3) Which of the following is FALSE about a temporal operators Φ and p? 1 <i>point</i>
Embedded System Hardware Testing	AG ϕ , EG ϕ , AF ϕ , and EF ϕ can be written in terms of AU ϕ and EU ϕ AX ϕ can be written with EG ϕ
Embedded System Hardware Testing - II	\bigcirc EX ϕ , EG ϕ (AF ϕ) and E(ϕ U p) is an adequate set of operators
Advances in Embedded System Hardware Testing	AXφ can be written with EXφ No, the answer is incorrect. Score: 0
Advances in Embedded System Hardware Testing - II	Accepted Answers: AXφ can be written with EGφ 4) If the future temporal operator (F) includes the present, then which of the following equivalences is true? 1 point
Testing for Embedded Software Systems	EFp = EX EFp EFp = $p \Lambda$ EX EFp EFp = $p V$ EX EFp

Powered by

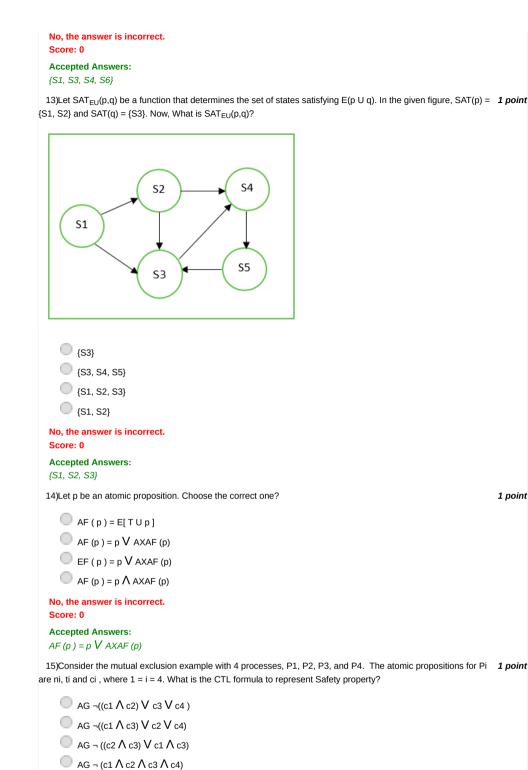

Google

$https://online courses.nptel.ac.in/noc18_cs54/uni...$

AFp V AFq and AF(p V q)	
\square AG(p Λ q) and AGp Λ AGq	
T and AGp -> EGp	
EFp Λ EFq and EF(p V q)	
No, the answer is incorrect.	
Score: 0 Accepted Answers:	
$EFp \Lambda EFq$ and $EF(p V q)$	
6) Which of the following pairs of CTL formulae is equivalent?	1
\bigcirc EFp Λ EFq and EF(p Λ q)	
\bigcirc EFp V EFq and EF(p V q)	
EFp and EGp	
T and EGp -> AGp	
No, the answer is incorrect.	
Score: 0 Accepted Answers:	
EFp V EFq and EF(p V q)	
7) What does the CTL model checking algorithm do?	1
Iteratively determines states which satisfy a given CTL formula	
A CTL formula is derived from the states of the model	
Determines the equivalent states of the model	
A model is created using specifications	
No, the answer is incorrect.	
Score: 0	
Accepted Answers: Iteratively determines states which satisfy a given CTL formula	
8) What are the inputs and outputs for the labelling algorithm for model checking?	1
\bigcirc INPUTS = Set of states which satisfy $m \phi$ and a CTL Formula $m \phi$. OUTPUT = A CTL Model M = (S, ->, L)	_
INPUTS = A CTL Model M = (S, ->, L) and a Set of states which satisfy φ . OUTPUT = CTL Formula φ	
INPUTS = A CTL Model M = (S, ->, L) and a CTL Formula φ . OUTPUT = Set of states which satisfy φ	
INPUTS = A CTL Model M = (S, ->, L). OUTPUT = A CTL Formula $\boldsymbol{\varphi}$.	
No, the answer is incorrect.	
Score: 0	
Accepted Answers: INPUTS = A CTL Model M = (S, ->, L) and a CTL Formula \boldsymbol{Q} . OUTPUT = Set of states which satisfy \boldsymbol{Q} .	
9) Which of the following is not a subformula of the CTL Formula AGp Λ AGq	1
о р	
Q AG p	
No, the answer is incorrect. Score: 0	
Accepted Answers: $p \wedge q$	
	1
10)Which of the following SAT function is FALSE?	1
SAT{φ1 V φ2} => SAT{φ1} U SAT{φ2}	
SAT{φ1 Λ φ2} => SAT{φ1} Π SAT{φ2}	

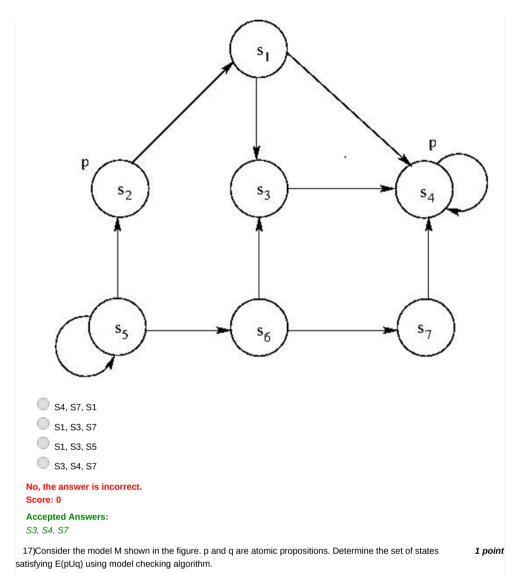

```
SAT{EF \varphi_1} = SAT{¬E{T U \varphi_1}}
No, the answer is incorrect.
Score: 0
Accepted Answers:
SAT{EF \varphi_1} = SAT{¬E{T U \varphi_1}}
```

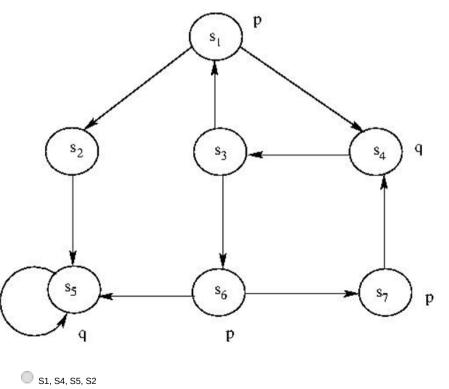
11)SAT_{EX}(p) is a function that determines the set of states satisfying EXp. In the given figure, SAT(p) = {S4, S6}. **1** point What is SAT_{EX}(p)?



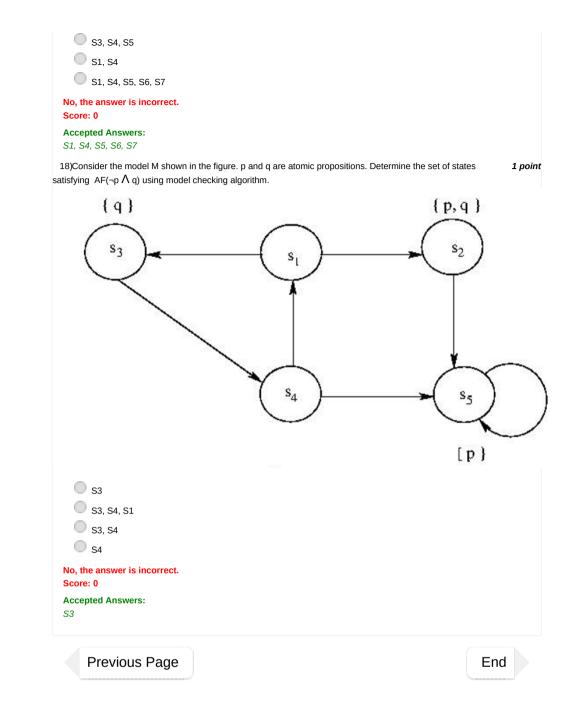

```
    {S1, S2, S3}
    {S1, S3}
    {S1}
    {S1}
    {S1, S3, S4, S6}
    No, the answer is incorrect.
    Score: 0
    Accepted Answers:
    {S1, S3}
```

12)SAT_{AF}(p) is a function that determines the set of states satisfying AFp. In the given figure, SAT(p) = {S4, S6}. **1** point What is SAT_{AF}(p)?


{S0}
{S1, S3}
{S1, S3, S4, S6}
{S0, S1, S3}



No, the answer is incorrect. Score: 0 Accepted Answers:


 $AG \neg (c1 \land c2 \land c3 \land c4)$

16)Consider the model M shown in the figure. p is an atomic proposition. Determine the set of states satisfying AXp1 point using model checking algorithm, where

Friday 09 November 2018 07:05 AM

