Courses » Design and pedagogy of the introductory programming course

Announcements Course Ask a Question Progress Mentor FAQ

Unit 3 - Week
2

Course outline

How to access the portal

Week 1

Week 2
Lecture 5 : Basic Ideas in Our
Approach.0:
Introduction
Lecture 6 :
Basic Ideas in
Our
Approach.1:
Examples of translating
manual algorithms to computer programs

Lecture 7 :
Basic Ideas in
Our
Approach.2:
More examples
Lecture 8 :
Basic Ideas in Our
Approach.3:
Should we
teach students
(manual)
problem solving strategies?

Assignment 2

The due date for submitting this assignment has passed.
As per our records you have not submitted this
Due on 2018-09-12, 23:59 IST. assignment.

1) Which of the following statements is true about first year students in science and 1 point engineering?

We do not expect them to know anything about computers and several may not know anything about computers.

We do not expect them to know much about algorithms and several may not know anything about algorithms.

In school they may have learned some algorithms but those algorithms are not relevant for programming.

A fifth standard student is not expected to know any algorithms and indeed does not know any algorithms.

No, the answer is incorrect.
Score: 0
Accepted Answers:
We do not expect them to know anything about computers and several may not know anything about computers.
2) Suppose $A[0 \ldots n-1]$ and $B[0 \ldots n-1]$ contain (decimal) digits of two 1 point numbers, in least significant to most significant order. The product needs to be computed in $C[0 \ldots 2 n-1]$, also in least to most significant digit order. Suppose we set $C[i+j]$ to be the sum of all possible products $A[i] * B[j]$. Which of the following is true?
C correctly contains the digits of the product.
C does not contain the digits, but the product does equal $\sum_{i} 10^{i} C[i]$.
© 2014 NPTEL - Privacy \& Terms - Honor Code - FAQs -
$\sqrt{6+}$

NTTET National Programme on Technology Enhanced Learning

NASSCOM ${ }^{\circ}$
Funded by

Our
Approach.5: Remarks on individual topics - 1

Lecture 11 :
Basic Ideas in
Our
Approach.6:
Remarks on individual topics

- 2, Conclusion

Weekly
Feedback
Download
Videos
Quiz :
Assignment 2
Assignment Solutions Week 2

Week 2 Lecture Slides

Week 3

Week 4

Score: 0
Accepted Answers:
C does not contain the digits, but the product does equal $\sum_{i} 10^{i} C[i]$.
3) When we use manual algorithms, which of the following is generally false?

1 pointWe use iteration.
\square We use recursion.
(D) We use conditional evaluation.We store values in variables.

No, the answer is incorrect.
Score: 0
Accepted Answers:
We store values in variables.
${ }^{4}$) Suppose I am calculating e using the series: $1+\frac{1}{1!}+\frac{1}{2!}+\cdots$. In this, 1 is $\mathbf{1}$ point the zeroth term, $\frac{1}{i!}$ is the i th term. Note that $0!=1$. Suppose at the beginning of any iteration variable i contains the number of iterations that have happened so far, s contains the sum $1+\frac{1}{1!}+\cdots+\frac{1}{(i-1)!}$, and t contains $\frac{1}{i!}$. Then, before the loop, the variables should be initialized as:

$$
\begin{aligned}
& s=1 ; i=1 ; t=1 \\
& s=0 ; i=1 ; t=1 \\
& s=1 ; i=0 ; t=0 \\
& s=1 ; i=0 ; t=1
\end{aligned}
$$

(- None of the above.
No, the answer is incorrect.
Score: 0
Accepted Answers:
$s=1 ; i=0 ; t=1 ;$
5) Suppose I am calculating e using the series: $1+\frac{1}{1!}+\frac{1}{2!}+\cdots$. In this, 1 is 1 point the zeroth term, $\frac{1}{i!}$ is the i th term. Note that $0!=1$. Suppose at the beginning of any iteration variable i contains the number of iterations that have happened so far, s contains the sum $1+\frac{1}{1!}+\cdots+\frac{1}{(i-1)!}$, and t contains $\frac{1}{i!}$. Then, the code inside the loop should be:

$$
\begin{aligned}
& t=t / i ; s=s+t ; i=i+1 \\
& i=i+1 ; t=t / i ; s=s+t \\
& t=t / i ; i=i+1 ; s=s+t \\
& i=i+1 ; s=s+t ; t=t / i \\
& \text { None of the above. }
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$i=i+1 ; t=t / i ; s=s+t ;$
6) "Being able to appreciate the beauty of object oriented programming" is

1 point closest to which of the following levels in Bloom's taxonomy of learning objectives?

No, the answer is incorrect.
Score: 0
Accepted Answers:
Evaluating
7) Which of the following attributes of real computer hardware is least important 1 point to discuss in an introductory programming course?

- Numbers are represented in binary.Memory is organized in bytes each of which has an address.
\square The CPU of a computer has registers which hold numbers and which are faster to access than main memory.

A machine language program consists of sequence of instructions which are represented using numeric codes.

No, the answer is incorrect.
Score: 0
Accepted Answers:
The CPU of a computer has registers which hold numbers and which are faster to access than main memory.
8) Suppose p is an int variable. Consider the expressions " $p++$ " and " $\mathrm{p}+1$ " and 1 point "++p". Which of the following is true?You should avoid using expressions "p++" or "++p" for their values.Only expressions " $p+1$ " and " $p++$ " have the same value.All three expressions have the same value.The value of p after executing " $p+1$ " and " $p++$ " is the same.
No, the answer is incorrect.
Score: 0
Accepted Answers:
You should avoid using expressions "p++" or "++p" for their values.
9) Suppose I have an array of length 10 containing numbers. I want to find the maximum 1 point number that can be obtained by adding up elements in any subarray of A. A subarray is simply a sequence of consecutive elements of the array starting at any index and ending at any index.

Suppose I find the solution by considering all possible subarrays, finding the sum of each subarray, and picking the maximum. How many subarrays do I need to consider?

No, the answer is incorrect.
Score: 0
Accepted Answers:
55
10Suppose x is an integer. Then $(x / 1000) \% 10$ evaluates to:
1 pointthird least significant digit of xthird most significant digit of xfourth least significant digit of xfourth most significant digit of x
No, the answer is incorrect.
Score: 0
Accepted Answers:
fourth least significant digit of x
11)Which of the following is false?

1 point
Students should be encouraged to design a manual algorithm before writing a computer program.

We should teach strategies to translate common idioms found in manual algorithms to the corresponding programming language equivalents.We should teach students how to design divide and conquer algorithms.We should take programming examples from many different areas.
No, the answer is incorrect.
Score: 0
Accepted Answers:
We should teach students how to design divide and conquer algorithms.

Previous Page

