NPTEL Online Certification COMPUTATIONAL HYDRAULICS
 Week 6 : Assignment
 July 24-October 13, 2017

NOTE: Attempt ALL questions. Make suitable assumptions, wherever necessary.

1. In Scilab, use ludcomp.sci to solve the following problem

$$
\left(\begin{array}{ccccc}
10 & 13 & 11 & -9 & 2 \\
1 & 4 & -7 & 1 & 13 \\
0 & 3 & -5 & -7 & 9 \\
1 & 2 & -3 & 4 & 5 \\
5 & 1 & 3 & -2 & 1
\end{array}\right)\left\{\begin{array}{l}
\phi_{1} \\
\phi_{2} \\
\phi_{3} \\
\phi_{4} \\
\phi_{5}
\end{array}\right\}=\left\{\begin{array}{c}
43 \\
57 \\
8 \\
37 \\
13
\end{array}\right\}
$$

The value of ϕ_{3} term of the inverse matrix is

- 3

2. In Scilab, use ludcomp.sci to solve the following problem

$$
\mathbf{A}=\left(\begin{array}{cccc}
10 & 2 & 3 & 5 \\
6 & 12 & 8 & 9 \\
10 & 11 & 13 & 13 \\
14 & 15 & 16 & 15
\end{array}\right)\left\{\begin{array}{l}
\phi_{1} \\
\phi_{2} \\
\phi_{3} \\
\phi_{4}
\end{array}\right\}=\left\{\begin{array}{c}
43 \\
90 \\
123 \\
152
\end{array}\right\}
$$

The value of ϕ_{2} term of the inverse matrix is

- 2

3. In Scilab, use jacobi.sci to solve the following problem

$$
\left(\begin{array}{ccccc}
10 & 13 & 11 & -9 & 2 \\
5 & 1 & 3 & -2 & 1 \\
1 & 4 & -7 & 1 & 13 \\
0 & 3 & -5 & -7 & 9 \\
1 & 2 & -3 & 4 & 5
\end{array}\right)\left\{\begin{array}{l}
\phi_{1} \\
\phi_{2} \\
\phi_{3} \\
\phi_{4} \\
\phi_{5}
\end{array}\right\}=\left\{\begin{array}{c}
43 \\
13 \\
57 \\
8 \\
37
\end{array}\right\}
$$

Starting from initial value 1 The value of ϕ_{3} term of the inverse matrix is

- NaN or Inf

4. In Scilab, use gseidel.sci to solve the following problem

$$
\left(\begin{array}{ccccc}
10 & 13 & 11 & -9 & 2 \\
5 & 1 & 3 & -2 & 1 \\
1 & 4 & -7 & 1 & 13 \\
0 & 3 & -5 & -7 & 9 \\
1 & 2 & -3 & 4 & 5
\end{array}\right)\left\{\begin{array}{l}
\phi_{1} \\
\phi_{2} \\
\phi_{3} \\
\phi_{4} \\
\phi_{5}
\end{array}\right\}=\left\{\begin{array}{c}
43 \\
13 \\
57 \\
8 \\
37
\end{array}\right\}
$$

Starting from initial value 1 The value of ϕ_{3} term of the inverse matrix is

- NaN or Inf

5. In Scilab, use tdma.sci to solve the following problem

$$
\left\{\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
5 & 1 & 2 & 0 & 0 & 0 \\
0 & 4 & 1 & 3 & 0 & 0 \\
0 & 0 & 3 & 1 & 4 & 0 \\
0 & 0 & 0 & 2 & 1 & 5 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right)\left\{\begin{array}{l}
\phi_{1} \\
\phi_{2} \\
\phi_{3} \\
\phi_{4} \\
\phi_{5} \\
\phi_{6}
\end{array}\right\}=\left\{\begin{array}{c}
11 \\
43 \\
33 \\
23 \\
13 \\
3
\end{array}\right\}
$$

The value of ϕ_{3} term of the inverse matrix is

- NaN or Inf

6. In Scilab, use $t d m a . s c i$ to solve the following problem

$$
\left(\begin{array}{cccccc}
10 & 1 & 0 & 0 & 0 & 0 \\
5 & 10 & 2 & 0 & 0 & 0 \\
0 & 4 & 10 & 3 & 0 & 0 \\
0 & 0 & 3 & 10 & 4 & 0 \\
0 & 0 & 0 & 2 & 10 & 5 \\
0 & 0 & 0 & 0 & 1 & 10
\end{array}\right)\left\{\begin{array}{l}
\phi_{1} \\
\phi_{2} \\
\phi_{3} \\
\phi_{4} \\
\phi_{5} \\
\phi_{6}
\end{array}\right\}=\left\{\begin{array}{l}
65 \\
88 \\
69 \\
50 \\
31 \\
12
\end{array}\right\}
$$

The value of ϕ_{3} term of the inverse matrix is

- 4

7. In Scilab, use newton_raphson.sci to solve the following problem

$$
\left(\begin{array}{ccc}
\phi_{1} & \phi_{2} & \phi_{3} \\
\phi_{1} & \phi_{2} & -1 \\
1 & 1 & 1
\end{array}\right)\left\{\begin{array}{l}
\phi_{1} \\
\phi_{2} \\
\phi_{3}
\end{array}\right\}=\left\{\begin{array}{l}
3 \\
1 \\
3
\end{array}\right\}
$$

The value of ϕ_{3} term of the inverse matrix is

- NaN or Inf

8. In Scilab, use newton_raphson.sci to solve the following problem

$$
\left(\begin{array}{ll}
\phi_{1} & \phi_{2} \\
\phi_{1} & -1
\end{array}\right)\left\{\begin{array}{l}
\phi_{1} \\
\phi_{2}
\end{array}\right\}=\left\{\begin{array}{c}
5 \\
-1
\end{array}\right\}
$$

The value of ϕ_{1} term of the inverse matrix is

- 1

9. In Scilab, use gseidel.sci to solve the following problem

$$
\left(\begin{array}{cc}
16 & 3 \\
7 & -11
\end{array}\right)\left\{\begin{array}{l}
\phi_{1} \\
\phi_{2}
\end{array}\right\}=\left\{\begin{array}{l}
11 \\
13
\end{array}\right\}
$$

Starting from initial value 0. If the relaxation factor is 0.5 , then number of iterations required in Gauss-Seidel-SOR method is

- more than that required for Gauss-Seidel approach
- less than that required for Gauss-Seidel-SOR approach with relaxation factor 0.25

10. Full matrix approach can not be solved using

- triadiagonal matrix algorithm

