NPTEL Online Certification COMPUTATIONAL HYDRAULICS
 Week 5 : Assignment
 July 24-October 13, 2017

NOTE: Make suitable assumptions, wherever necessary.

1. In Polynomial Interpolation Method, derivative of weight function at a point depends on
(a) Derivative of the polynomial basis
(b) Points in the support domain including the point under consideration
(c) Points in the support domain excluding the point under consideration
2. Moving Least Squares method utilizes
(a) Weighted error minimization approach
(b) Weighted error maximization approach
3. Weight function in Moving Least Squares method should be
(a) Positive valued within support domain
(b) Zero outside support domain
(c) Negative valued outside support domain
(d) Does not depend on support domain
4. Space Time Moving Least Squares method utilizes
(a) Taylor Series expansion to represent derivatives
(b) Maclaurin Series expansion to represent derivatives
5. Space time polynomial basis for two-dimensional in space and one-dimensional in time contains
(a) 11 terms
(b) 9 terms
(c) 8 terms
(d) 10 terms
6. In weight function calculation for Space time Moving Least Squares method, norm correction is performed to
(a) Neutralize the effect of order difference between spatial variables
(b) Neutralize the effect of order difference between spatial and temporal variables
7. In Scilab, execute $\operatorname{det}(A)$ [determinant] for

$$
\mathbf{A}=\left(\begin{array}{ccccc}
1 & 2 & -3 & 4 & 5 \tag{1}\\
0 & 3 & -5 & -7 & 9 \\
5 & -4 & 3 & -2 & 1 \\
1 & 4 & -7 & -10 & 13 \\
-15 & 13 & 11 & -9 & 2
\end{array}\right)
$$

The determinant value is
(a) 3994
(b) 3394
(c) $\mathbf{3 9 4 4}$
8. In Scilab, execute $\operatorname{inv}(A)$ [inverse] for

$$
\mathbf{A}=\left(\begin{array}{ccccc}
1 & 2 & -3 & 4 & 5 \tag{2}\\
0 & 3 & -5 & -7 & 9 \\
5 & -4 & 3 & -2 & 1 \\
1 & 4 & -7 & -10 & 13 \\
-15 & 13 & 11 & -9 & 2
\end{array}\right)
$$

The value of $(3,3)$ term of the inverse matrix is
(a) -0.1340241
(b) 0.1340241
(c) 0.2866184
(d) 0.1389452
9. In Scilab, use gausselim.sci to solve the following problem

$$
\left(\begin{array}{ccccc}
1 & 2 & -3 & 4 & 5 \\
0 & 3 & -5 & -7 & 9 \\
5 & 1 & 3 & -2 & 1 \\
1 & 4 & -7 & 1 & 13 \\
10 & 13 & 11 & -9 & 2
\end{array}\right)\left\{\begin{array}{l}
\phi_{1} \\
\phi_{2} \\
\phi_{3} \\
\phi_{4} \\
\phi_{5}
\end{array}\right\}=\left\{\begin{array}{c}
37 \\
8 \\
13 \\
57 \\
43
\end{array}\right\}
$$

The value of ϕ_{3} term of the inverse matrix is
(a) 1
(b) 2
(c) 3
(d) 4
(e) 5
10. In Scilab, use $\boldsymbol{\phi}=\mathbf{A} \backslash \mathbf{r}$ to solve the following problem

$$
\begin{aligned}
& \mathbf{A}=\left(\begin{array}{ccccc}
1 & 2 & -3 & 4 & 5 \\
0 & 3 & -5 & -7 & 9 \\
5 & 1 & 3 & -2 & 1 \\
1 & 4 & -7 & 1 & 13 \\
10 & 13 & 11 & -9 & 2
\end{array}\right) \\
& \mathbf{r}=\left\{\begin{array}{c}
37 \\
8 \\
13 \\
57 \\
43
\end{array}\right\}
\end{aligned}
$$

The value of ϕ_{2} term of the inverse matrix is
(a) 1
(b) 2
(c) 3
(d) 4
(e) 5

