Unit 6 - Week 5

Course
 outline

How to access
the portal
Week 1

Week 2

Week 3

Week 4

Week 5

- Lecture 21: Mesh-Tree
Method: Plynomial Interpolation Method
- Lecture 22 :

Mesh -Free
Method: Moving Least Squares Method

- Lecture 23:

Mesh-Free
Method :
Space-Time
Moving Least
Squares
Method

- Lecture 24:

Numerical
Method : Matrix
Structure and
Scilab

- Lecture 25:

Algebraic
Equation:Gauss
Elimination
Method
Quiz: Week 5
Assignment

- Lecture Material

Scilab Code

Week 5 Assignment

The due date for submitting this assignment has passed. Due on 2017-09-14, 23:59 IST.

Submitted assignment

1) In Polynomial Interpolation Method, derivative of weight function at a point depends on
\square Derivative of the polynomial basis
\square Points in the support domain including the point under consideration
\square Points in the support domain excluding the point under consideration
No, the answer is incorrect.
Score: 0

Accepted Answers:

Derivative of the polynomial basis
Points in the support domain including the point under consideration
2) Moving Least Squares method utilizes
\square Weighted error minimization approach
\square Weighted error maximization approach
No, the answer is incorrect.
Score: 0
Accepted Answers:
Weighted error minimization approach
3) Weight function in Moving Least Squares method should be
\square Positive valued within support domain
\square Zero outside support domain
\square Negative valued outside support domain
\square Does not depend on support domain
No, the answer is incorrect.
Score: 0
Accepted Answers:
Positive valued within support domain
Zero outside support domain
4) Space Time Moving Least Squares method utilizes
\square Taylor Series expansion to represent derivatives
\square Maclaurin Series expansion to represent derivatives
No, the answer is incorrect.
Score: 0
Accepted Answers:
Taylor Series expansion to represent derivatives

Feedback for week 5

Assignment 5 Solution

Week 6

Week 7

Week 8

Week 9

Week 10

Week 11

Week 12
5) Space time polynomial basis for two-dimensional in space and one-dimensional in time

1 point contains

```
11
```

$\square 8$
10
No, the answer is incorrect.
Score: 0
Accepted Answers:
10
6) In weight function calculation for Space time Moving Least Squares method, norm correction 1 point is performed toNeutralize the effect of order difference between spatial variablesNeutralize the effect of order difference between spatial and temporal variables
No, the answer is incorrect.
Score: 0

Accepted Answers:

Neutralize the effect of order difference between spatial and temporal variables
7)

In Scilab, execute det(A) [determinant] for $\mathbf{A}=\left(\begin{array}{ccccc}\mathbf{1} & 2 & -3 & 4 & 5 \\ 0 & 3 & -5 & -7 & 9 \\ 5 & -4 & 3 & -2 & 1 \\ 1 & 4 & -7 & -10 & 13 \\ -15 & 13 & 11 & -9 & 2\end{array}\right)$.
1 point

The determinant value is3994
3394
3944
No, the answer is incorrect.
Score: 0
Accepted Answers:
3944
8)

In Scilab, execute $\operatorname{inv}(\mathbf{A})$ [inverse] for $\mathbf{A}=\left(\begin{array}{ccccc}1 & 2 & -3 & 4 & 5 \\ 0 & 3 & -5 & -7 & 9 \\ 5 & -4 & 3 & -2 & 1 \\ 1 & 4 & -7 & -10 & 13 \\ -15 & 13 & 11 & -9 & 2\end{array}\right)$
The value of $(3,3)$ term of the inverse matrix is
$-0.1340241$0.13402410.28661840.1389452

No, the answer is incorrect.
Score: 0
Accepted Answers:
0.1389452
9) In Scilab, use gausselim.sci to solve the following problem

1 point

$$
\left(\begin{array}{ccccc}
1 & 2 & -3 & 4 & 5 \\
0 & 3 & -5 & -7 & 9 \\
5 & 1 & 3 & -2 & 1 \\
1 & 4 & -7 & 1 & 13 \\
10 & 13 & 11 & -9 & 2
\end{array}\right)\left\{\begin{array}{l}
\phi_{1} \\
\phi_{2} \\
\phi_{3} \\
\phi_{4} \\
\phi_{5}
\end{array}\right\}=\left\{\begin{array}{c}
37 \\
8 \\
13 \\
57 \\
43
\end{array}\right\}
$$

The value of ϕ_{3} term is
1
$\square 2$
$\square 3$
$\square 4$
$\square 5$
No, the answer is incorrect.
Score: 0

Accepted Answers:

3
10)

In Scilab, use $\boldsymbol{\phi}=\mathbf{A} \backslash \mathbf{r}$ to solve the following problem $\mathbf{A}=\left(\begin{array}{ccccc}\mathbf{1} & 2 & -3 & 4 & 5 \\ 0 & 3 & -5 & -7 & 9 \\ 5 & 1 & 3 & -2 & 1 \\ 1 & 4 & -7 & 1 & 13 \\ 10 & 13 & 11 & -9 & 2\end{array}\right)$ and
$\mathbf{r}=\left\{\begin{array}{c}\mathbf{3 7} \\ 8 \\ 13 \\ 57 \\ 43\end{array}\right\}$
The value of ϕ_{2} term is
1
$\square 2$
$\square 3$
4
5
No, the answer is incorrect.
Score: 0
Accepted Answers:
2

Previous Page

A project of
$N D E L$
National Programme on
Technology Enhanced Learning

In association with

Funded by
Government of India
Ministry of Human Resource Development

