urses » Computa	tional Hydraulics	Announcements	Course	Forum	Progress	Mentor
nit 6 - We	ek 5					
Course outline	Week 5 Assignment					
How to access the portal	The due date for submitting this assignment has passed. Due on 2017-09-14, 23:59 IST. Submitted assignment					
Veek 1	1) In Polynomial Int	erpolation Method, derivativ	e of weight fu	nction at a p	oint depends or	n 1 poi i
Veek 2	Derivative oPoints in the	f the polynomial basis e support domain including t	he point under	considerati	on	
Veek 3	Points in the	e support domain excluding	the point unde	r considerat	ion	
Veek 4	No, the answer is Score: 0	s incorrect.				
Week 5	Accepted Answers: Derivative of the polynomial basis					
 Lecture 21: Mesh-Tree Method : Plynomial Interpolation Method 	 Points in the support domain including the point under consideration 2) Moving Least Squares method utilizes Weighted error minimization approach 					
Lecture 22: Mesh -Free Method : Moving Least Squares Method	Weighted er No, the answer is Score: 0 Accepted Answe Weighted error mi	ror maximization approach s incorrect. rs: nimization approach				
 Lecture 23: Mesh-Free Method : Space-Time Moving Least Squares Method 	 3) Weight function in Moving Least Squares method should be Positive valued within support domain Zero outside support domain Negative valued outside support domain Does not depend on support domain 					1 poi
 Lecture 24: Numerical Method : Matrix Structure and Scilab 	No, the answer is Score: 0 Accepted Answe Positive valued wi	s incorrect. rs: thin support domain				
 Lecture 25: Algebraic Equation:Gauss Elimination Method 	Zero outside supp 4) Space Time Mov Taylor Serie	ort domain ring Least Squares method i s expansion to represent de	utilizes rivatives			1 poi
Quiz : Week 5 Assignment	Maclaurin S No, the answer is Score: 0	eries expansion to represen s incorrect.	t derivatives			

```
Accepted Answers:
Taylor Series expansion to represent derivatives
```

Scilab Code

07/12/2017

Feedback for week 5

 Assignment 5 Solution

Week 6

Week 7

Week 8

Week 9

Week 10

Week 11

Week 12

Computational Hydraulics - - Unit 6 - Week 5 5) Space time polynomial basis for two-dimensional in space and one-dimensional in time 1 point contains 11 9 8 10 No, the answer is incorrect. Score: 0 **Accepted Answers:** 10 6) In weight function calculation for Space time Moving Least Squares method, norm correction 1 point is performed to Neutralize the effect of order difference between spatial variables Neutralize the effect of order difference between spatial and temporal variables No, the answer is incorrect. Score: 0 **Accepted Answers:** Neutralize the effect of order difference between spatial and temporal variables 7) 1 point In Scilab, execute det(A) [determinant] for A = $\begin{bmatrix} 1 & 2 & -3 & -7 & -3 \\ 0 & 3 & -5 & -7 & 9 \\ 5 & -4 & 3 & -2 & 1 \\ 1 & 4 & -7 & -10 & 13 \\ -15 & 13 & 11 & -9 & 2 \end{bmatrix}.$ The determinant value is 3994 3394 3944 No, the answer is incorrect. Score: 0 **Accepted Answers:** 3944 In Scilab, execute inv(A) [inverse] for A = $\begin{pmatrix} 1 & 2 & -3 & 4 & 3 \\ 0 & 3 & -5 & -7 & 9 \\ 5 & -4 & 3 & -2 & 1 \\ 1 & 4 & -7 & -10 & 13 \\ 15 & 13 & 11 & -9 & 2 \end{pmatrix}$ 1 point 8) The value of (3, 3) term of the inverse matrix is -0.1340241 0.1340241 0.2866184 0.1389452 No, the answer is incorrect. Score: 0 **Accepted Answers:** 0.1389452 9) In Scilab, use gausselim.sci to solve the following problem 1 point $\begin{pmatrix} 1 & 2 & -3 & 4 & 5 \\ 0 & 3 & -5 & -7 & 9 \\ 5 & 1 & 3 & -2 & 1 \\ 1 & 4 & -7 & 1 & 13 \\ 10 & 13 & 11 & -9 & 2 \end{pmatrix} \begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \\ \phi_4 \\ \phi_5 \end{pmatrix} = \begin{cases} 37 \\ 8 \\ 13 \\ 57 \\ 43 \end{cases}$

