Unit 3 - Week 2

Course outline

How to access the portal

Week 1

Week 2

- Lecture 6: Finite Difference Approximation
- Lecture 7:

Ordinary Differential Equation: IVP

- Lecture 8:

Ordinary
Differential
Equation: BVP

- Lecture 9

Partial
Differential
Equation: BVP

- Lecture 10:

Partial
Differential
Equation : IBVP

- Week 2: Lecture Material

Quiz : Week 2: Assignment

Feedback for week 2

Assignment-2 Solution

Week 3

Week 4

Week 5

Week 6

Week 7

Week 2: Assignment

The due date for submitting this assignment has passed. Due on 2017-08-23, 23:59 IST.

Submitted assignment

1) Order of truncation error for Crank-Nicolson method in case of IBVP problem

1 pointFirst order in space and second order in time
First order in space and first order in time
second order in space and First order in time
second order in space and second order in time
No, the answer is incorrect.
Score: 0
Accepted Answers:
second order in space and second order in time
2) Arrange the following methods according to order of truncation error (higher to lower) for IVP 1 point
(a) Euler method
(b) Fourth order Runge-Kutta
(c) Modified Euler method
a-b-c
$a-c-b$
b-a-c
b-c-a
c-a-b
c-b-a
No, the answer is incorrect.
Score: 0
Accepted Answers:
$b-c-a$
3) Identify the two-step IVP method

1 point
Backward Euler method
Euler Cauchy method
\square Second order Runge-Kutta method
No, the answer is incorrect.
Score: 0
Accepted Answers:
Euler Cauchy method
Second order Runge-Kutta method
4) Identify the correct discretization for $\phi^{\prime \prime}$

1 point

Week 8

Week 9

Week 10

Week 11

Week 12

$$
\begin{aligned}
\phi_{i}^{\prime \prime} & =\frac{\phi_{i}-2 \phi_{i+1}+\phi_{i+2}}{\Delta x^{2}}+\mathcal{O}(\Delta x) \\
\phi_{i}^{\prime \prime} & =\frac{\phi_{i}-2 \phi_{i+1}+\phi_{i+2}}{\Delta x^{2}}+\mathcal{O}\left(\Delta x^{2}\right) \\
\phi_{i}^{\prime \prime} & =\frac{\phi_{i}-3 \phi_{i+1}+2 \phi_{i+2}}{\Delta x^{2}}+\mathcal{O}(\Delta x) \\
\phi_{i}^{\prime \prime} & =\frac{\phi_{i}-3 \phi_{i+1}+2 \phi_{i+2}}{\Delta x^{2}}+\mathcal{O}\left(\Delta x^{2}\right)
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\phi_{i}^{\prime \prime}=\frac{\phi_{i}-2 \phi_{i+1}+\phi_{i+2}}{\Delta x^{2}}+\mathcal{O}(\Delta x)$
5) Consistency is the property of

1 pointMesh/grid size
Discretization
No, the answer is incorrect.
Score: 0

Accepted Answers:

Discretization
6) Accuracy of any problem depends on

1 point
accuracy of the discretization of differential equation
accuracy of the discretization of boundary conditions
accuracy of the discretization of differential equation and boundary conditions
none of the above
No, the answer is incorrect.
Score: 0
Accepted Answers:
accuracy of the discretization of differential equation and boundary conditions
7) Differential equation with only spatial derivatives is called as

1 point
boundary value problem
initial boundary value problem
initial value problem
No, the answer is incorrect.
Score: 0
Accepted Answers:
boundary value problem
8) Explicit or Implicit scheme depends on

1 point
time derivative
time level of time derivative
time level of space derivatives
No, the answer is incorrect.
Score: 0
Accepted Answers:
time level of space derivatives
9) Boundary Value Problems (BVP) can be solved as
1.5 points
initial boundary value problem with arbitrary initial condition
initial value problem with arbitrary initial conditionnone of the above

No, the answer is incorrect.

Score: 0

Accepted Answers:

initial boundary value problem with arbitrary initial condition
10)The following differential equation with a general variable (ϕ)
$\frac{\partial^{2} \phi(x)}{\partial x^{2}}+\frac{\phi_{0}-\phi(x)}{\lambda}=0$ can be discretized as, $\left(\phi_{0}\right.$ and λ are constants $)$

$$
\begin{aligned}
& \frac{\lambda}{\Delta x^{2}} \phi_{i-1}+\left(1+\frac{2 \lambda}{\Delta x^{2}}\right) \phi_{i}+\frac{\lambda}{\Delta x^{2}} \phi_{i+1}=-\phi_{0} \\
& \frac{\lambda}{\Delta x^{2}} \phi_{i-1}-\left(1-\frac{2 \lambda}{\Delta x^{2}}\right) \phi_{i}+\frac{\lambda}{\Delta x^{2}} \phi_{i+1}=-\phi_{0} \\
& \frac{\lambda}{\Delta x^{2}} \phi_{i-1}-\left(1+\frac{2 \lambda}{\Delta x^{2}}\right) \phi_{i}+\frac{\lambda}{\Delta x^{2}} \phi_{i+1}=-\phi_{0}
\end{aligned}
$$

No, the answer is incorrect.
Score: 0

Accepted Answers:

$\frac{\lambda}{\Delta x^{2}} \phi_{i-1}-\left(1+\frac{2 \lambda}{\Delta x^{2}}\right) \phi_{i}+\frac{\lambda}{\Delta x^{2}} \phi_{i+1}=-\phi_{0}$

In association with

Funded by
Government of India
Ministry of Human Resource Development

Powered by

