K			
reviewer1@nptel.iitm.ac			
Courses » Comput	ational Hydraulics Announcements Course Forum Progress Mentor		
Unit 13 - W	/eek 12		
Course outline	Assignment 12		
How to access the portal	The due date for submitting this assignment has passed. Due on 2017-10-18, 23:59 IST. Submitted assignment		
Week 1	1) The unsteady flow in pipes is solved with Finite Volume discretization 2 point		
Week 2	 Implicit Explicit 		
Week 3	None of these		
Week 4	No, the answer is incorrect. Score: 0		
Week 5	Accepted Answers: Explicit		
Week 6	2) In explicit discretization of 1D-channel(Δt_c)-2D-surface water(Δt_s)-2D-groundwater(Δt_g) flow problem, 2 point		
Week 7	arrange the time-steps required in increasing order (from physical point of view and identical spatial resolution).		
Week 8	$t_c < t_s < t_g$ $t_c < t_s > t_g$		
Week 9	b t t t t t t t t t t t t t t t t t t t		
Week 10	$\bigcirc t_c > t_s > t_g$		
Week 11	No, the answer is incorrect. Score: 0		
Week 12	Accepted Answers:		
 Lecture 49 : Unsteady Flow in Pipes 	 3) In interaction of different types of flow, information can be transferred in terms of 2 point source/sink term 		
Lecture 50 :	depth		

4) In case of gaining stream, water level in the aquifer is at a _____ than that of a river

- Lecture 50 : Surface Water and Ground Water Interaction
- Lecture 51 : Course Summary
- Quiz : Assignment 12
- Assignment 12
 Solution
- https://onlinecourses.nptel.ac.in/noc17_ce07/unit?unit=116&assessment=122

none of these

Accepted Answers:

source/sink term

Iower level

higher levelnone of these

Score: 0

depth

No, the answer is incorrect.

2 points

Computational Hydraulics - - Unit 13 - Week 12

higher level		
5) In case of losing stream, water level in the aquifer is at a t	han that of a river	2 po
O lower level		
higher level		
none of these		
No, the answer is incorrect.		
Score: 0		
Accepted Answers:		
6) In unsteady pipe flow problem, stability of the numerical schen	ne depends on	2 po
Courant number		
Peclet Number		
Froude number		
CFL condition		
Reynolds number		
None of these		
No, the answer is incorrect.		
Score: 0		
Accepted Answers:		
Courant number		
CEL condition		

