NPTEL Online Certification COMPUTATIONAL HYDRAULICS Week 10 : Assignment Solution July 24-October 13, 2017

 ${\bf NOTE:}$ Attempt ${\bf ALL}$ questions. Make suitable assumptions, wherever necessary.

1. Consider the problem discussed in Steady Channel Flow: Channel Network without Reverse Flow with downstream boundary discharge as $200 m^3/s$. What is the flow depth at the internal junction 2? Keep other parameters constant and utilize code steady 1D channel network without reverse.sci.

• 2.9575652

2. Consider the problem discussed in Steady Channel Flow: Channel Network without Reverse Flow with downstream boundary discharge as $200 m^3/s$. What is the discharge passing through channel 1? Keep other parameters constant and utilize code steady_1D_channel_network_without_reverse.sci.

• 200

3. Consider the problem discussed in **Steady Channel Flow: Channel Network with Reverse Flow** with downstream flow depth as 4m. What is the flow depth at junction 5? Keep other parameters constant and utilize code steady 1D channel network with reverse cfg1.sci/steady 1D channel network with reverse cfg2.sci/steady 1D channel network with reverse cfg3.sci.

• 3.9039337

4. Consider the problem discussed in Steady Channel Flow: Channel Network with Reverse Flow with downstream flow depth as 4m and upstream/ downstream discharge 200 m^3/s . What is the flow depth at junction 5? Keep other parameters constant and utilize code steady_D_channel_network_with_reverse_cfg1.sci/ steady_1D_channel_network_with_reverse_cfg2.sci/ steady_1D_channel_network_with_reverse_cfg3.sci.

• 3.9025047

5. Consider the problem discussed in Steady Channel Flow: Channel Network with Reverse Flow with downstream flow depth as 4m. What is the flow depth at junction 5? Change the flow directions for channels 4, 5 and 6. Keep other parameters constant and utilize code steady_D_channel_network_with_reverse_cfg1.sci/ steady_1D_channel_network_with_reverse_cfg2.sci/ steady_1D_channel_network_with_reverse_cfg3.sci.

• 3.9039337

6. Will the governing equations utilized in Steady Channel Flow: Channel Network with Reverse Flow remain valid if inflow/outflow discharge changes with time? Utilize code steady 1D channel network with reverse cfg1.sci/steady 1D channel network with reverse cfg2.sci/steady 1D channel network with reverse cfg3.sci.

• No