

Funded by

Week 6	No, the answer is incorrect. ce De Score: 0
Week 7	Accepted Answers: $h \neq A [T,, T_n] \land t$
Week 8	3) Using the graphical approach, find out the temperature at 70 mm depth from exposed 2.5 points
Week 9	face in a slab after being exposed to 4 hours of fire
Week 10	● 400°C
Week 11	 ● 500°C ● 600°C
Week 12	─ 700°C
	No, the answer is incorrect.
	Score: 0
	Accepted Answers:

4) If the floor area at a storey of a residential building is 1250 m^2 what should **2.5 points** be the suitable exit width in m of the stairway from fire life safety point of view. Assume occupant density of residential area as $12.5 \text{ m}^2/\text{person}$.

1
O 2
O 3
O 4
No, the answer is incorrect.
Score: 0
Accepted Answers:
4

5) Estimate the change in steel rebar temperatures of a column 400 mm x 400 mm in cross section for a clear cover of 40 mm after 2 hours, given that $a_c=0.417'10^6 m^2/s$, the bar diameter is 25 mm, average thermal conductivity of concrete is 2.0 W/m°K, average density is 2500 kg/m3 and specific heat is 1000 J/kg°K

	4
No, the answer is incorrect. Score: 0	
Accepted Answers: (Type: Range) 700,800	

5 points

6) Estimate the rise in temperature at the end of two hours of a steel rebar of diameter 25 mm in a concrete slab of thickness 150 mm with a clear cover of 40 mm. given that a_c =0.417′106 m²/s, average thermal conductivity concrete as 1.0 W/m°K, average density as 2500kg/m³, and the specific heat as 1000 J/kg°K

5 points

Previous Page

End