Course outline

Introduction and

Nonlinear Effects

Mode

**Pulses** 

Dispersion Effects and

Transverse Electromagnetic

Construction of Ultrafast Laser and Measurement of

Measurement Techniques in Ultrafast Spectroscopy, and their kinetic and quantum

Photochemistry, Solid State, Transition Metal Complexes

**Ab Initio Molecular Dynamics** 

Ab Initio Molecular Dynamics

**Dynamics - Theoretical Point** 

mechanical models

Photophysics,

and Biomolecules

Maxwell's Equations

of Photochemistry and Photophysics – Part 1

of Photochemistry and Photophysics – Part 2

**Attosecond Chemical** 

**Attosecond Chemical** 

Attosecond Chemical

Attosecond Chemical

Ouiz: Week11 Assignment

Dynamics - Experimental

of View

Point of View

Dynamics 3

Dynamics 4

Femtochemistry of

Nanocatalysis

Ultrafast Processes in Physical Chemistry –

How to access the portal?

Mathematical Representation

Mentor

NPTEL » Ultrafast Optics and Spectroscopy

## Unit 12 - Attosecond Chemical Dynamics - Experimental Point of View

| Week11 Assignment                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| The due date for submitting this assignment has passed.  As per our records you have not submitted this assignment.                                                                                                                                                                                                                                                                                                                                            | Due on 2019-10-16, 23:59 IST. |
| 1) What is true for a catalytic reaction?  activation energy is suppressed reaction rate is increased catalyst is not consumed in the reaction all true  No, the answer is incorrect.                                                                                                                                                                                                                                                                          | 2 point                       |
| Score: 0 Accepted Answers: all true                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |
| <ul> <li>What is the typical time scale for heat exchange between electron and phonon baths?</li> <li>1 fs</li> <li>1 ps</li> <li>1 ns</li> <li>1 μs</li> </ul>                                                                                                                                                                                                                                                                                                | 2 point                       |
| No, the answer is incorrect. Score: 0 Accepted Answers: 1 ps                                                                                                                                                                                                                                                                                                                                                                                                   |                               |
| 3) phase-matching in HHG is primarily controlled by (review)  pressure of the gaseous medium thickness of the nonlinear crystal refractive index of plasma temperature of the medium.                                                                                                                                                                                                                                                                          | 2 point                       |
| No, the answer is incorrect. Score: 0 Accepted Answers: pressure of the gaseous medium                                                                                                                                                                                                                                                                                                                                                                         |                               |
| 4) Molecular electrostatic potential includes potential (review)  due to electron-electron interaction due to electron-nuclei interaction due to both electron-electron and electron-nuclei interaction due to none of above                                                                                                                                                                                                                                   | 1 poin                        |
| No, the answer is incorrect. Score: 0 Accepted Answers: due to both electron-electron and electron-nuclei interaction                                                                                                                                                                                                                                                                                                                                          |                               |
| <ul> <li>5) Which one of the following is true? (review)</li> <li>Frenkel excitons typically exhibit larger exciton binding energies than Mott-Wannier exciton</li> <li>Mott-Wannier exciton binding energies are not comparable to the thermal energy kT</li> <li>Frenkel excitons binding energies are comparable to the thermal energy kT</li> <li>Mott-Wannier exciton typically exhibit larger exciton binding energies than Frenkel excitons.</li> </ul> | 1 poin                        |
| No, the answer is incorrect. Score: 0 Accepted Answers: Frenkel excitons typically exhibit larger exciton binding energies than Mott-Wannier exciton                                                                                                                                                                                                                                                                                                           |                               |
| 6) Which one of the following is true? (review) Frenkel excitons typically exhibit larger exciton binding energies than Mott-Wannier exciton Mott-Wannier exciton binding energies are not comparable to the thermal energy kT Frenkel excitons binding energies are comparable to the thermal energy kT Mott-Wannier exciton typically exhibit larger exciton binding energies than Frenkel excitons.                                                         | 1 poin                        |
| No, the answer is incorrect. Score: 0 Accepted Answers: Frenkel excitons typically exhibit larger exciton binding energies than Mott-Wannier exciton                                                                                                                                                                                                                                                                                                           |                               |
| <ul> <li>7) Typical lifetime of Plasmon of a nanoparticle is (review)</li> <li>2 ps</li> <li>2 ns</li> <li>2 fs</li> <li>2 μs</li> </ul>                                                                                                                                                                                                                                                                                                                       | 1 poin                        |
| No, the answer is incorrect. Score: 0 Accepted Answers: 2 fs                                                                                                                                                                                                                                                                                                                                                                                                   |                               |
| 8) Rate of IC and ISC can be comparable in a photochemical process due to (review)                                                                                                                                                                                                                                                                                                                                                                             | 1 poin                        |
| strong spin-spin coupling strong spin-orbit coupling strong orbital angular momentum strong spin angular momentum                                                                                                                                                                                                                                                                                                                                              |                               |
| No, the answer is incorrect. Score: 0 Accepted Answers: strong spin-spin coupling                                                                                                                                                                                                                                                                                                                                                                              |                               |
| You were allowed to submit this assignment only once.                                                                                                                                                                                                                                                                                                                                                                                                          |                               |