Course outline

Introduction and

Nonlinear Effects

Mode

Mode

week 3

Pulses

Dispersion Effects and

Dispersion Effects

Transverse Electromagnetic

 Nonlinear and Dispersion Effects (Continued..)

 Nonlinear and Dispersion Effects (Continued..)

Transverse Electromagnetic

Transverse Electromagnetic

Quiz : New Assessment

Construction of Ultrafast Laser and Measurement of

Measurement Techniques in Ultrafast Spectroscopy, and their kinetic and quantum

Photochemistry, Solid State, **Transition Metal Complexes**

Ab Initio Molecular Dynamics

Ab Initio Molecular Dynamics

Dynamics - Theoretical Point

mechanical models

Photophysics,

and Biomolecules

Maxwell's Equations

of Photochemistry and Photophysics - Part 1

of Photochemistry and Photophysics - Part 2

Attosecond Chemical

Attosecond Chemical

Femtochemistry of

Dynamics - Experimental

No, the answer is incorrect.

either option (b) or (c).

Accepted Answers:

Score: 0

of View

Point of View

Nanocatalysis

Ultrafast Processes in Physical Chemistry -

Mode (Continued..)

How to access the portal?

Mathematical Representation

NPTEL » Ultrafast Optics and Spectroscopy

Ask a Question

Unit 4 - Dispersio

New Assessment week 3		
The due date for submitting this assignment has passed. As per our records you have not submitted this assignment.	Due on 2019-08-21,	23:59 IST.
When light propagates through an absorbing medium		1 poi
intensity drops linearly as a function of optical path length intensity drops exponentially as a function of optical path length intensity increases linearly as a function of optical path length intensity increases exponentially as function of optical path length		
No, the answer is incorrect.		
Score: 0 Accepted Answers: intensity drops exponentially as a function of optical path length		
2) If you make an attempt to view a 100 fs optical pulse is using an oscilloscope and a photodiode,	what would you see in	1 poi
cilloscope:	what would you see in	i pon
a 100 fs pulse a 100 ps pulse		
a 10 fs pulse		
a 10 ns pulse No, the answer is incorrect.		
Score: 0 Accepted Answers:		
a 10 ns pulse		
3) When light propagates through a lasing medium		1 poir
intensity drops linearly as a function of optical path length intensity drops exponentially as a function of optical path length intensity increases linearly as a function of optical path length intensity increases exponentially as function of optical path length		
No, the answer is incorrect. Score: 0		
Accepted Answers: intensity increases exponentially as function of optical path length		
4) If you make an attempt to view a 100 fs optical pulse is using an oscilloscope and a photodiode,	what would you see in	1 poi
cilloscope:	what would you see in	r pon
a 100 fs pulse		
a 100 ps pulse a 10 fs pulse		
a 10 ns pulse		
No, the answer is incorrect. Score: 0 Accepted Answers: a 10 ns pulse		
5) Population inversion can be achieved for		1 poir
two level system		
one level system any system		
of four level system		
No, the answer is incorrect. Score: 0		
Accepted Answers: four level system		
6) Longitudinal modes are those λs which sustain in a cavity of length L, where		1 poir
Longitudinal modes are those As which sustain in a cavity of length L, where		
λ=2L/m Invalid HTML tag: tag name o:p is not allowed		
λ=L/m Invalid HTML tag: tag name o:p is not allowed		
λ=L Invalid HTML tag: tag name o:p is not allowed		
λ=2L Invalid HTML tag: tag name o:p is not allowed		
No, the answer is incorrect. Score: 0		
Accepted Answers:		
$\lambda=2L/m$ Invalid HTML tag: tag name o:p is not allowed		
7) Due to optical Kerr effect,		1 poir
Refractive index depends on wavelength Refractive index depends on intensity		
Refractive index becomes greater than 1		
Refractive index becomes less than 1.		
No, the answer is incorrect. Score: 0		

