Course outline

Introduction and

Introduction (Part 1)

Introduction (Part 2)

of Ultrafast Pulse

How to access the portal?

Mathematical Representation

Mathematical Representation

 Mathematical Representation of Ultrafast Pulse (Continued)

 Mathematical Representation of Ultrafast Pulse (Continued)

 Mathematical Representation of Ultrafast Pulse (Continued)

 Mathematical Representation of Ultrafast Pulse (Continued)

O Quiz: Week1 Assessment

Nonlinear Effects

Mode

Pulses

Dispersion Effects and

Transverse Electromagnetic

Construction of Ultrafast Laser and Measurement of

Measurement Techniques in Ultrafast Spectroscopy, and their kinetic and quantum

Photochemistry, Solid State, **Transition Metal Complexes**

Ab Initio Molecular Dynamics

Ab Initio Molecular Dynamics

Dynamics - Theoretical Point

mechanical models

Ultrafast Processes in Physical Chemistry -

Photophysics,

and Biomolecules

Maxwell's Equations

of Photochemistry and Photophysics - Part 1

of Photochemistry and Photophysics - Part 2

Attosecond Chemical

Attosecond Chemical

Femtochemistry of

Dynamics - Experimental

of View

Point of View

Nanocatalysis

NPTEL » Ultrafast Optics and Spectroscopy

Unit 2 - Introduction

Week1 Assessment The due date for submitting this assignment has passed.	Due on 2019-08-14, 23:59 IST.
As per our records you have not submitted this assignment.	
What is the center wavelength of the second harmonic of 800 nm pulse? 600 nm 800 nm	1 poi
○ 266 nm ○ 400 nm	
No, the answer is incorrect. Score: 0 Accepted Answers: 400 nm	
What is the center wavelength of the third harmonic of 800 nm pulse?	1 poi
○ 400 nm ○ 266 nm ○ 400 nm	
○ 800 nm	
No, the answer is incorrect. Score: 0 Accepted Answers: 266 nm	
What is the center wavelength of the fourth harmonic of 800 nm pulse?	1 poi
800 nm	
200 nm 266 nm	
O 600 nm No, the answer is incorrect.	
Score: 0 Accepted Answers:	
200 nm	
Does phase matching bandwidth depend on thickness of the SHG crystal? Over phase matching bandwidth is proportional to the thickness of the SHG crystal.	1 poi
 yes, phase matching bandwidth is proportional to the thickness of the SHG crystal yes, phase matching bandwidth is inversely proportional to the thickness of the SHG cryst no, phase matching bandwidth does not depend on the thickness of the SHG crystal no, phase matching bandwidth only depends on refractive index of the SHG crystal. 	al
No, the answer is incorrect. Score: 0	
Accepted Answers: yes, phase matching bandwidth is inversely proportional to the thickness of the SHG crystal	
5) White light generation occurs due to	1 poi
second harmonic generation	r pon
self-phase modulation third harmonic generation	
sum frequency generation	
No, the answer is incorrect. Score: 0	
Accepted Answers: self-phase modulation	
High harmonic generation creates	1 poi
all (including odd and even) harmonics	
 only even order harmonics only odd order harmonics only second harmonic 	
No, the answer is incorrect. Score: 0	
Accepted Answers: only odd order harmonics	
White light generation occurs due to	1 poi
second harmonic generation	
self-phase modulation third harmonic generation	
sum frequency generation	
No, the answer is incorrect. Score: 0	
Accepted Answers: self-phase modulation	
Which one is correct?	1 poir
Sum frequency generation beam appears in the middle of the two non-collinear fundamen	
 Second harmonic generation beam appears in the middle of the two non-collinear fundam Third harmonic generation beam appears in the middle of the two non-collinear fundamen 	ital beams
 Difference frequency generation beam appears in the middle of the two non-collinear fund No, the answer is incorrect. 	lamental beams
Score: 0 Accepted Answers:	
Sum frequency generation beam appears in the middle of the two non-collinear fundamental beams	
Double refraction occurs in	1 poi
any medium	
in isotropic medium in birefringent crystal	
in gas phase	
No, the answer is incorrect. Score: 0	
Accepted Answers: in birefringent crystal	
10) Refractive index of a medium in X-ray region is	1 poi
less than 2 but greater than 1.5	
oless than 1 greater than 1	
greater than 2	
No, the answer is incorrect. Score: 0 Accepted Answers:	
less than 1	
11) Optical Kerr effects refers to	1 poi
 change of refractive index as a function of intensity change of density as a function of intensity change of polarization as a function of intensity 	
change of polarization as a function of intensity change of phase matching as a function of intensity.	
No, the answer is incorrect.	
Score: 0 Accepted Answers: Change of refractive index as a function of intensity	
Optical Kerr effects refers to Change of refractive index as a function of intensity	1 poi
change of density as a function of intensity	

change of polarization as a function of intensity

No, the answer is incorrect.

Accepted Answers:

Score: 0

change of phase matching as a function of intensity.

change of refractive index as a function of intensity