Course outline Introduction and Introduction (Part 1) Introduction (Part 2) of Ultrafast Pulse How to access the portal? **Mathematical Representation** Mathematical Representation Mathematical Representation of Ultrafast Pulse (Continued) O Quiz: Week1 Assessment **Nonlinear Effects** Mode **Pulses** Dispersion Effects and Transverse Electromagnetic Construction of Ultrafast Laser and Measurement of Measurement Techniques in Ultrafast Spectroscopy, and their kinetic and quantum Photochemistry, Solid State, **Transition Metal Complexes** **Ab Initio Molecular Dynamics** **Ab Initio Molecular Dynamics** **Dynamics - Theoretical Point** mechanical models **Ultrafast Processes in** Physical Chemistry - Photophysics, and Biomolecules Maxwell's Equations of Photochemistry and Photophysics - Part 1 of Photochemistry and Photophysics - Part 2 Attosecond Chemical Attosecond Chemical Femtochemistry of Dynamics - Experimental of View Point of View Nanocatalysis NPTEL » Ultrafast Optics and Spectroscopy ## Unit 2 - Introduction | Week1 Assessment The due date for submitting this assignment has passed. | Due on 2019-08-14, 23:59 IST. | |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------| | As per our records you have not submitted this assignment. | | | What is the center wavelength of the second harmonic of 800 nm pulse? 600 nm 800 nm | 1 poi | | ○ 266 nm<br>○ 400 nm | | | No, the answer is incorrect. Score: 0 Accepted Answers: 400 nm | | | What is the center wavelength of the third harmonic of 800 nm pulse? | 1 poi | | ○ 400 nm<br>○ 266 nm<br>○ 400 nm | | | ○ 800 nm | | | No, the answer is incorrect. Score: 0 Accepted Answers: 266 nm | | | What is the center wavelength of the fourth harmonic of 800 nm pulse? | 1 poi | | 800 nm | | | 200 nm<br>266 nm | | | O 600 nm No, the answer is incorrect. | | | Score: 0 Accepted Answers: | | | 200 nm | | | Does phase matching bandwidth depend on thickness of the SHG crystal? Over phase matching bandwidth is proportional to the thickness of the SHG crystal. | 1 poi | | <ul> <li>yes, phase matching bandwidth is proportional to the thickness of the SHG crystal</li> <li>yes, phase matching bandwidth is inversely proportional to the thickness of the SHG cryst</li> <li>no, phase matching bandwidth does not depend on the thickness of the SHG crystal</li> <li>no, phase matching bandwidth only depends on refractive index of the SHG crystal.</li> </ul> | al | | No, the answer is incorrect. Score: 0 | | | Accepted Answers: yes, phase matching bandwidth is inversely proportional to the thickness of the SHG crystal | | | 5) White light generation occurs due to | 1 poi | | second harmonic generation | r pon | | self-phase modulation third harmonic generation | | | sum frequency generation | | | No, the answer is incorrect.<br>Score: 0 | | | Accepted Answers:<br>self-phase modulation | | | High harmonic generation creates | 1 poi | | all (including odd and even) harmonics | | | <ul> <li>only even order harmonics</li> <li>only odd order harmonics</li> <li>only second harmonic</li> </ul> | | | No, the answer is incorrect.<br>Score: 0 | | | Accepted Answers: only odd order harmonics | | | White light generation occurs due to | 1 poi | | second harmonic generation | | | self-phase modulation third harmonic generation | | | sum frequency generation | | | No, the answer is incorrect. Score: 0 | | | Accepted Answers:<br>self-phase modulation | | | Which one is correct? | 1 poir | | Sum frequency generation beam appears in the middle of the two non-collinear fundamen | | | <ul> <li>Second harmonic generation beam appears in the middle of the two non-collinear fundam</li> <li>Third harmonic generation beam appears in the middle of the two non-collinear fundamen</li> </ul> | ital beams | | <ul> <li>Difference frequency generation beam appears in the middle of the two non-collinear fund</li> <li>No, the answer is incorrect.</li> </ul> | lamental beams | | Score: 0 Accepted Answers: | | | Sum frequency generation beam appears in the middle of the two non-collinear fundamental beams | | | Double refraction occurs in | 1 poi | | any medium | | | in isotropic medium in birefringent crystal | | | in gas phase | | | No, the answer is incorrect.<br>Score: 0 | | | Accepted Answers:<br>in birefringent crystal | | | 10) Refractive index of a medium in X-ray region is | 1 poi | | less than 2 but greater than 1.5 | | | oless than 1 greater than 1 | | | greater than 2 | | | No, the answer is incorrect.<br>Score: 0<br>Accepted Answers: | | | less than 1 | | | 11) Optical Kerr effects refers to | 1 poi | | <ul> <li>change of refractive index as a function of intensity</li> <li>change of density as a function of intensity</li> <li>change of polarization as a function of intensity</li> </ul> | | | change of polarization as a function of intensity change of phase matching as a function of intensity. | | | No, the answer is incorrect. | | | Score: 0 Accepted Answers: Change of refractive index as a function of intensity | | | | | | Optical Kerr effects refers to Change of refractive index as a function of intensity | 1 poi | | change of density as a function of intensity | | change of polarization as a function of intensity No, the answer is incorrect. Accepted Answers: Score: 0 change of phase matching as a function of intensity. change of refractive index as a function of intensity