This assignment deals with fitting of the Michaelis Menten kinetics for a given enzyme. Substrate concentration [S] and the rate normalized to the enzyme concentration (i.e. $\mathrm{v} / \mathrm{E}_{0}$) is provided for your convenience. Use the approximation method that at high and low substrate concentration and obtain $\mathrm{k}_{\text {cat }}$ and K_{M} from this procedure. Write the answer for the first 2 questions in the piece of paper, scan to make file 1. The following two questions carry 5 marks in total.

$[\mathrm{S}]$	$\mathrm{v} / \mathrm{E}_{0}$
(M)	$\left(\mathrm{s}^{-1} \cdot \mathrm{M}^{-1}\right)$
0	0.0000
0.0002	0.0020
0.0006	0.0055
0.001	0.0083
0.0025	0.0204
0.007	0.0436
0.01	0.0576
0.025	0.0871
0.06	0.1102
0.15	0.1347
0.25	0.1306
0.6	0.1371
1	0.1400
2	0.1449
5	0.1426

1. Use the data from [S] at 2.0 and 5.0 M to estimate $\mathrm{k}_{\text {cat. }}$ (round off to 3 decimals) Average of $k_{\text {cat }} 0.1449$ and 0.1426 is 0.1435 , which is rounded off to 0.144 .
2. Use the first 5 data points, use the $\mathrm{k}_{\text {cat }}$ from above and provide the value for K_{M}. Hint: set intercept to zero while fitting. (round off to 3 decimals)
Slope: 8.2353 units $=k_{\text {cat }} / K_{M}$
$\mathrm{K}_{\mathrm{M}}=\mathbf{0 . 0 1 7}$

[S]

Use the linearized form of the equation, i.e. the Lineweaver Burk plot, where you can plot E_{0} / v as a function of $1 /[\mathrm{S}]$. Save the matlab/excel sheet fits as a picture (file 2), using the numbers from this write the following in piece of paper and scan to make file 3 . The following two questions carry 10 marks in total.

3. Use the slope information to estimate $\mathrm{k}_{\text {cat }}$ (use the average value obtained from the fit only). (round off to 3 decimals)
Minor error in the question, intercept would provide $k_{\text {cat }}$
Intercept $=8.8622=1 / \mathrm{k}_{\text {cat }}$
$k_{\text {cat }}=0.113$ units
4. Use the intercept information to estimate K_{M} (use the average value obtained from the fit only). (round off to 3 decimals)
Minor error in the question, slope with provide information of K_{M}
$K_{M}=0.0992^{*} 0.113=0.011$ units
Use the Michaelis Menten form to obtain the value of $\mathrm{k}_{\mathrm{cat}}$ and K_{M}. Fit using the cftool in MATLAB as taught in the lectures, save the final fit as a figure (file 4). The following question carries 15 marks in total. Write the following answers in a paper and scan it (file 5).

5. Write the average value of $\mathrm{k}_{\text {cat }}$ obtained from this method. (round off to 3 decimals) $k_{\text {cat }}=0.143$ units
6. Write the average value of K_{M} obtained from this method. (round off to 3 decimals) $K_{M}=0.016$ units

