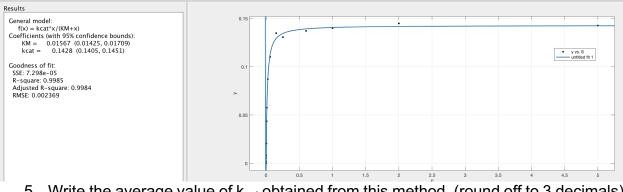

This assignment deals with fitting of the Michaelis Menten kinetics for a given enzyme. Substrate concentration [S] and the rate normalized to the enzyme concentration (i.e. v/E_0) is provided for your convenience. Use the approximation method that at high and low substrate concentration and obtain k_{cat} and K_M from this procedure. Write the answer for the first 2 questions in the piece of paper, scan to make file 1. The following two questions carry 5 marks in total.

[S]	v/E ₀
(M)	(s ⁻¹ .M ⁻¹)
0	0.0000
0.0002	0.0020
0.0006	0.0055
0.001	0.0083
0.0025	0.0204
0.007	0.0436
0.01	0.0576
0.025	0.0871
0.06	0.1102
0.15	0.1347
0.25	0.1306
0.6	0.1371
1	0.1400
2	0.1449
5	0.1426

- 1. Use the data from [S] at 2.0 and 5.0 M to estimate k_{cat} . (round off to 3 decimals) Average of k_{cat} 0.1449 and 0.1426 is 0.1435, which is rounded off to 0.144.
- 2. Use the first 5 data points, use the k_{cat} from above and provide the value for K_M . Hint: set intercept to zero while fitting. (round off to 3 decimals) Slope: 8.2353 units = k_{cat}/K_M $K_M = 0.017$



Use the linearized form of the equation, i.e. the Lineweaver Burk plot, where you can plot E_0/v as a function of 1/[S]. Save the matlab/excel sheet fits as a picture (file 2), using the numbers from this write the following in piece of paper and scan to make file 3. The following two questions carry 10 marks in total.

- Use the slope information to estimate k_{cat} (use the average value obtained from the fit only). (round off to 3 decimals) *Minor error in the question, intercept would provide k_{cat}* Intercept = 8.8622 = 1/k_{cat} k_{cat} = 0.113 units
- Use the intercept information to estimate K_M (use the average value obtained from the fit only). (round off to 3 decimals)
 Minor error in the question, slope with provide information of K_M
 K_M = 0.0992*0.113 = 0.011 units

Use the Michaelis Menten form to obtain the value of k_{cat} and K_M . Fit using the cftool in MATLAB as taught in the lectures, save the final fit as a figure (file 4). The following question carries 15 marks in total. Write the following answers in a paper and scan it (file 5).

- Write the average value of k_{cat} obtained from this method. (round off to 3 decimals) k_{cat} = 0.143 units
- 6. Write the average value of K_M obtained from this method. (round off to 3 decimals) $K_M = 0.016$ units