Quantitative Methods in Chemistry: Week 12 subjective assignment

1. An organic acid is expected to have the elemental composition of $\mathrm{C}=68.850 \%$ and H $=4.935 \%$ in its pure form. It is analyzed by a method that has the relative standard deviation $\left(s_{r}\right) \rightarrow$ population standard deviation (σ), and the s_{r} values for C and H are 4 ppt and 6 ppt , respectively (ppt is parts per thousand). If the analysis of a pure sample of organic acid by this method gives C $=68.550 \%$ and $\mathrm{H}=4.828 \%$, then at 95% confidence level is there any error in the analysis of either element?
2. Two analytes, A and B are passed through a 20 cm chromatographic column with a dead time of 1.15 min . Analytes A and B show retention times of 12.40 and 13.52 min , and width at the base $=1.05$ and 1.10 min , respectively, under a particular eluting condition. Based on the data provided, calculate the following:
(a) Column Resolution
(b) Plate heights for analyte A and B
(c) Length of column required to achieve a resolution of 1.3
(d) Time required to elute A on the column that gives the resolution of 1.3
3. A drug with formula $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{~S}_{4}$ is being quantified in a sample by titration. For this, all the sulfur in the sample is oxidized to SO_{2} and the gas is passed into $\mathrm{H}_{2} \mathrm{O}_{2}$ to form $\mathrm{H}_{2} \mathrm{SO}_{4}$. If the acid produced by 0.433 g sample required 22.13 mL of 40 mM NaOH , calculate the weight $\%$ of the drug in the sample.
4. Given the following reaction: $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{AgBr} \rightarrow \mathrm{NaBr}+\mathrm{Na} 3\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]$
a. How many moles of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ are needed to react completely with 22.1 g of AgBr ?
b. What is the mass of NaBr that will be produced from 22.1 g of AgBr ?
5. Answer the following questions:
a. Write the functional form of the Gaussian distribution.
b. Integrate the function between $\pm \sigma$. You may use definite integral tables or online mathematical tools (such as wolfram alpha) to answer this (and subsequent) question(s)
c. Integrate the function between $\pm 2 \sigma$
d. Integrate the function between $\pm 3 \sigma$
6. For laminar flow of liquid in a capillary tube, viscosity coefficient (η) is obtained by Poiseuille equation: ($\rho, \mathrm{r}, \mathrm{t}, \mathrm{I}$ and V are the density of the solution, radius of the capillary, time taken for the flow, length of the capillary and volume of the solvent, respectively)

$$
\eta=\frac{\pi h \rho g r^{4} t}{8 l V}
$$

Each of the parameters are associated with their respective error (i.e. $\Delta \boldsymbol{\rho}, \Delta r, \Delta t, \Delta l$ and $\Delta \mathrm{V}$). Deduce the error in the measurement of viscosity coefficient applying the idea of error propagation.

