`	/
1	<u>۱</u>

(https://swayam.gov.in/nc_details/NPTEL)

reviewer4@nptel.iitm.ac.in ~

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Quantitative Methods in Chemistry (course)

Announcements (announcements) About the Course (https://swayam.gov.in/nd1_noc20_cy02/preview)

Ask a Question (forum) Progress (student/home) Mentor (student/mentor)

Unit 9 - Week 6

Course Assignment 6 outline The due date for submitting this assignment has passed. Due on 2020-03-11, 23:59 IST. How does an As per our records you have not submitted this assignment. **NPTEL** online course work? 1) The steps that could have systematic errors in the calibration of the burette experiment 2 points Week 0 fluctuations in the temperature using an uncalibrated thermometer MATLAB weighing the mass of conical flask that is not completely dried Week 1 using an uncalibrated weighing balance burette that is not appropriately filled Week 2 using ultra-pure water assuming each addition of 2 mL would result in exactly 2 g increase in weight Week 3 fluctuations in the voltage supply that connects to the weighing balance Week 4 No, the answer is incorrect. Score: 0 Accepted Answers: Week 5 using an uncalibrated thermometer using an uncalibrated weighing balance Week 6 burette that is not appropriately filled Using 2) The steps that could have resulted in random errors in the calibration of the burette 2 points spreadsheet experiment software to perform data fluctuations in the temperature analysis towards calibrating a using an uncalibrated thermometer burette (unit? weighing the mass of conical flask that is not completely dried unit=64&lesson=65) using an uncalibrated weighing balance Using burette that is not appropriately filled spreadsheet to using ultra-pure water analyze linear

dependence	assuming each addition of 2 mL would result in exactly 2 g increase in weight
variables (unit?	fluctuations in the voltage supply that connects to the weighing balance
unit=64&lesson=66)	No, the answer is incorrect.
Using	Score: 0 Accepted Answers:
spreadsheet	fluctuations in the temperature
towards data	fluctuations in the voltage supply that connects to the weighing balance
analysis with	3) The steps that could have personal errors in the calibration of the burette experiment 2 points
example of rate kinetics (unit?	
unit=64&lesson=69)	fluctuations in the temperature
◯ Quiz :	using an uncalibrated thermometer
Assignment 6	weighing the mass of conical hask that is not completely dried
(assessment? name=67)	burgette thet is not appropriately filled
Subjective	
Assignment 2	\bigcirc assuming each addition of 2 mL would result in exactly 2 g increase in weight
(/noc20_cy02/subjective?	Inclusion of a supply that connects to the weighing balance
name=68)	No the answer is incorrect
Quantitative Methods in	Score: 0
Chemistry :	Accepted Answers:
Week 6	
(unit?	A researcher would like to know concentration of a chemical he had synthesized to determine the
unit=64&lesson=70)	overall yield. However, since it is a liquid that couldn't be purified further and he knows that the
 Subjective 	impurities, if any, do not absorb UV light he is resorting to using UV-visible spectrophotometry for this
Assignment 2 solutions (unit?	purpose. Fortunately, he is able to obtain the same chemical (a liquid) from a chemical inventory with
unit=64&lesson=137)	program and provide the slope, intercept and R^2 value
Wook 7	
Week /	c (M) = 0.012, 0.020, 0.052, 0.072, 0.092, 0.100
Week 8	A (units) = 0.090, 0.150, 0.390, 0.540, 0.690, 0.750
	4) Slope =
Week 9	
Week 10	No the answer is incorrect
	Score: 0
Week 11	Accepted Answers:

Week 12

Download Videos

Text Transcripts

Accepted Answers: (*Type: Range*) 7.4,7.6

5) Intercept =___

No, the answer is incorrect. Score: 0 Accepted Answers: (Type: Numeric) 0

6) *R*² value = _____

2 points

1 point

Quantitative Methods in Chemistry Unit 9 - Week 6
No, the answer is incorrect.
Accepted Answers: (Type: Numeric) 1
1 рој
7) Using the calibration curve that you have obtained above, determine the concentration of the sample when an absorbance of 0.45 is measured(Round off the answer upto 3 decimal points)
No, the answer is incorrect. Score: 0
Accepted Answers: (Type: Numeric) 0.060
2 poin
Determine the heat of dissolution of a fictitious weak monoprotic acid (165 g/mol) for the data provided below using a spreadsheet program. Assume that NaOH has been standardized and the concentration equal to 0.025 N. V_NaOH is the volume of standardized NaOH (mL) required for 10 mL aliquots of the weak acid at the given temperature. Concordant values, so provided only once in this example
Temp (°C) : 30, 33, 36, 39, 42, 45 V_NaOH (mL) : 10.0, 12.1, 13.5, 15.0, 17.0, 19.5
8) $\Delta H^{\circ}(kJ/mol) = $
No, the answer is incorrect.
Score: 0 Accepted Answers:
(Type: Range) 33,35
$(2) P^2$ upture
9) K ⁻ value
No, the answer is incorrect. Score: 0
Accepted Answers: (Type: Range) 0.99,1.00
1 poi
From the list of provided data, determine the order of reaction and also its rate constant (units not required, round off to two decimals). Hint: all data are simulated and expected to yield R^2 of close to 1.0 to make the problem easy
time (s) = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

conc_A = 1.000, 0.607, 0.368, 0.223, 0.135, 0.082, 0.050, 0.030, 0.018, 0.011, 0.007, 0.004, 0.002, 0.002, 0.001, 0.001

conc_B = 1.000, 0.667, 0.500, 0.400, 0.333, 0.286, 0.250, 0.222, 0.200, 0.182, 0.167, 0.154, 0.143, 0.133, 0.125, 0.118

1 point

2 points

4 points

1 point

conc_C = 1.000, 0.800, 0.667, 0.571, 0.500, 0.444, 0.400, 0.364, 0.333, 0.308, 0.286, 0.267, 0.250, 0.235, 0.222, 0.211

conc_D = 1.000, 0.779, 0.607, 0.472, 0.368, 0.287, 0.223, 0.174, 0.135, 0.105, 0.082, 0.064, 0.050, 0.039, 0.030, 0.024

10For A, the order is

No, the answer is incorrect. Score: 0 Accepted Answers: (*Type: Numeric*) 1

11)For A, the rate constant is _____ units

No, the answer is incorrect. Score: 0 Accepted Answers: (*Type: Range*) 0.49,0.51

12For B, the order is

No, the answer is incorrect. Score: 0 Accepted Answers: *(Type: Numeric) 2*

13For B, the rate constant is _____ units

No, the answer is incorrect. Score: 0 Accepted Answers: (*Type: Range*) 0.49,0.51

14For C, the order is

No, the answer is incorrect. Score: 0 Accepted Answers: *(Type: Numeric) 2*

15For C, the rate constant is _____ units

No, the answer is incorrect. Score: 0 Accepted Answers: 1 point

1 point

1 point

1 point

1 point

(Type: Range) 0.24,0.26

16For D, the order is

No, the answer is incorrect. Score: 0 Accepted Answers: (*Type: Numeric*) 1

1 point

1 point

17For D, the rate constant is _____ units

No, the answer is incorrect. Score: 0 Accepted Answers: (*Type: Range*) 0.24,0.26