Courses » Molecules in Motion

Announcements Course Ask a Question Progress Mentor FAQ

Unit 2 - Week

1:

Course outline

How to access
the portal

Week 1 :
Lecture 1 :
Kinetic theory of gases

Lecture 2 :
Kinetic theory
of gases
(Contd.)
Lecture 3 :
Kinetic theory
of gases
(Contd.)
Lecture 4 :
Kinetic theory of gases
(Contd.)
Lecture 5 :
Kinetic theory
of gases
(Contd.)
Lecture
Materials
Quiz : Week 1
Assignment 1
Feedback for Week 1

Week 2 :
Week 3 :

Week 1 Assignment 1

The due date for submitting this assignment has passed.
As per our records you have not submitted this
Due on 2018-08-22, 23:59 IST. assignment.

1) The correct Ideal Gas Law equation is ($\mathrm{P}=\mathrm{Pr}$ essure $\mathrm{V}=$ Volume N_{A} =Avogadro's number 1 point $\mathrm{N}=$ Total number of molecules $\mathrm{n}=$ Number of moles)
(a) $\mathrm{PV}=\mathrm{NR} T$
(b) $\mathrm{PV}=N_{A} \mathrm{RT}$
(c) $P V=n R T$(d) Both a and b

No, the answer is incorrect.
Score: 0
Accepted Answers:
(c) $P V=n R T$
2) The density of an Ideal gas is

1 point
(a) Directly proportional to temperature
(b) Inversely proportional to temperature
(c) Directly proportional to square root of temperature(d) Inversely proportional to square root of temperature

No, the answer is incorrect.
Score: 0
Accepted Answers:
(b) Inversely proportional to temperature
3) Relation between Boltzmann Constant (k) and Universal Gas Constant(R) is

1 point (N_{A} =Avogadro's number $\mathrm{n}=$ Number of moles)
© 2014 NPTEL - Privacy \& Terms - Honor Code - FAQs -
A project of

NTTTET National Programme on Technology Enhanced Learning

Funded by

Week 7
Week 8
Download
Videos
Assignment
Solution
Interactive
Session with
Students

No, the answer is incorrect.
Score: 0
Accepted Answers:
(c) $R=N_{A} k$
4) Which statement is correct according to the Kinetic Theory?

1 point
a) The molecules interact through inelastic collision
b) Gravity has no effect on molecular motionc) After the collisions, total kinetic energy of the gas molecules increasesd) The size of the gas molecules is not negligible

No, the answer is incorrect.
Score: 0
Accepted Answers:
b) Gravity has no effect on molecular motion
5) In case of elastic collision

1 point
a) Total Kinetic Energy and Momentum of the particles remains same before and after the collision
b) Total Kinetic Energy increases and Momentum of the particles decreases before and after the collision
c) Both Total Kinetic Energy and Momentum of the particles increase before and after the collision
d) Total Kinetic Energy decreases and Momentum of the particles increases before and after the collision

No, the answer is incorrect.
Score: 0
Accepted Answers:
a) Total Kinetic Energy and Momentum of the particles remains same before and after the collision
6) The correct statement about Translational Kinetic Energy of the Molecules
a) The Mean Kinetic Energy per Molecule is proportional to temperatureb) The Mean Kinetic Energy per Mole is proportional to temperature
c) Both a and b are correctd) The Mean Kinetic Energy per Molecule is proportional to pressure

No, the answer is incorrect.
Score: 0
Accepted Answers:
c) Both a and b are correct
7) For an Ideal monoatomic gas, $C_{V}=12.5 \mathrm{~J} / \mathrm{mol}$.K. What is the value of C_{P} ?
(a) $C_{P}=4.2 \mathrm{~J} / \mathrm{mol}$. K
(b) $C_{P}=20.8 \mathrm{~J} / \mathrm{mol}$. K
(c) $C_{P}=-4.2 \mathrm{~J} / \mathrm{mol}$. K
(d) $C_{P}=-20.8 \mathrm{~J} / \mathrm{mol}$. K

No, the answer is incorrect.
Score: 0
Accepted Answers:
(b) $C_{P}=20.8 \mathrm{~J} / \mathrm{mol}$. K
8) The Ideal Gas Law reduces to Boyle's law whena) The temperature \& no. of moles of the gas are held constantb) The pressure \& no. of moles of the gas are held constantc) The temperature \& pressure of the gas are held constantd) Only the temperature is held constant

No, the answer is incorrect.
Score: 0
Accepted Answers:
a) The temperature \& no. of moles of the gas are held constant
9) The Root Mean Square Speed is

1 pointa) Directly proportional to temperatureb) Inversely proportional to square root of temperaturec) Inversely proportional to square root of Molecular Massd) Directly proportional to square root of Molecular Mass

No, the answer is incorrect.
Score: 0
Accepted Answers:
c) Inversely proportional to square root of Molecular Mass
10)The root mean square speed of N 2 molecules at 300 K isa) $517 \mathrm{~m} / \mathrm{s}$b) $731 \mathrm{~m} / \mathrm{s}$c) $445 \mathrm{~m} / \mathrm{s}$d) $545 \mathrm{~m} / \mathrm{s}$

No, the answer is incorrect.
Score: 0
Accepted Answers:
a) $517 \mathrm{~m} / \mathrm{s}$

Previous Page

