

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

In association with
NASSCOM®
Funded by

Crystals Part 1	volume of this unit cell is equal to	
Week 4 : Symmetry in Crystals Part 2	Ce De 1 3/4	
Week 5 : Crystal Systems, Point	1/2 2	
Space Groups	No, the answer is incorrect. Score: 0	
Week 6 : Crystallographic Notations	Accepted Answers: 1	R
Week 7 : Coordination number, voids, defects in crystals	5) Which of the following is valid choice for the primitive lattice translation vectors of a BCC lattice with a point at the origin? $\vec{a} = \hat{i}, \ \vec{b} = \hat{j}, \ \vec{c} = \hat{k}$	1 poi 🚠
Interactive Session	$ec{a}=\hat{i}+\hat{j}, ~~ec{b}=\hat{i}-\hat{j}, ~~ec{c}=\hat{k}$	
Week 8 : X-ray Diffraction and Concepts related to X-ray Diffraction	$ec{a} = \hat{i}/2, \ ec{b} = \hat{j}/2, \ ec{c} = \hat{k}/2$ None of the other choices No, the answer is incorrect.	
Week 9 : X - Ray Diffraction, X - Ray Crystallography & Electron Microscopy	Score: 0 Accepted Answers: None of the other choices 6) The 3-dimensional hexagonal close packed crystal is	1 point
Week 10 : Common Crystal Structures	 a triclinic Bravais lattice a hexagonal Bravail lattice with a two- atom basis 	
Week 11 : Theory of Electronic Structure of Solids	 No, the answer is incorrect. Score: 0 Accepted Answers: 	
Interaction Session	7) The coordination number of an FCC lattice and a BCC lattice are, respectively	1 point
Week 12 : Theory of Electronic Structure of Solids, Part 2	 6 and 6 6 and 8 12 and 8 None of the others 	
	No, the answer is incorrect. Score: 0 Accepted Answers: 12 and 8 8) A convenient choice of unit cell for the hexagonal Bravais lattice is a parallelepiped with the usual symbols for the sides and angles. The restriction for this lattice is $a = b$; $\gamma = 120^{\circ}$, $\beta = \alpha = 90^{\circ}$	e 1 point

Solid State Chemistry - - Unit 4 - Week 2 Unit Ce...

0	
$a=b eq c; ~~\gamma=60^\circ, ~~eta=lpha=90^\circ$	
0	
$a=b; ~lpha=120^\circ$	
None of the above	
No, the answer is incorrect.	
Score: 0	
Accepted Answers: $a=b; \ \gamma=120^\circ, \ eta=lpha=90^\circ$	5
9) A square lattice is shown below with 4 shaded regions marked A, B, C and D.	1 point
The region(s) corresponding to unit cell(s) is/are	
A, B, C and D	_
A, B and D only	
C and B only	
C and D only	
No, the answer is incorrect.	
Score: 0	
Accepted Answers: C and D only	
10) The coordination number of sodium ions in a NaCl crystals is equal to	1 point
4	
O 6	
0 12	
No, the answer is incorrect.	
Score: 0	
Accepted Answers: 6	

Previous Page

End

Solid State Chemistry - - Unit 4 - Week 2 Unit Ce...

2
R
R