reviewer4@nptel.iitm.ac.in ▼ Courses » Solid State Chemistry Announcements Ask a Question Course **Progress** Unit 16 - Week 12: Theory of Electronic Structure of Solids, Part 2 Register for **Assignment 12 Certification exam** The due date for submitting this assignment has passed. Course As per our records you have not submitted this Due on 2019-04-24, 23:59 IST. outline assignment. 1) The difference between the crystal momentum and electron momentum is 1 point How to access the portal The crystal momentum has different units than the electron momentum Practice The crystal momentum refers to the momentum of the atoms in the crystal whereas the electron momentum refers to the momentum of the electrons in the crystal Week 1 : Solid The electron momentum is an eigenfunction of the momentum operator whereas the crystal State And Solid State Materials momentum is not. None of the others. Week 2 Unit Cells And No, the answer is incorrect. Lattices Score: 0 Week 3: **Accepted Answers:**

Symmetry In Crystals Part 1

Week 4 : Symmetry in Crystals Part 2

Week 5 : Crystal Systems, Point Groups and Space Groups

Week 6 : Crystallographic Notations

Week 7 : Coordination number, voids, defects in The electron momentum is an eigenfunction of the momentum operator whereas the crystal momentum not.

2) You are given the band structure of a crystal. Based on just the band structure, you can tell *1 point* whether the material is a

conductor or not

conductor, insulator or semiconductor

a suitable material for LED applications

None of the other choices

No, the answer is incorrect.

Score: 0

Accepted Answers:

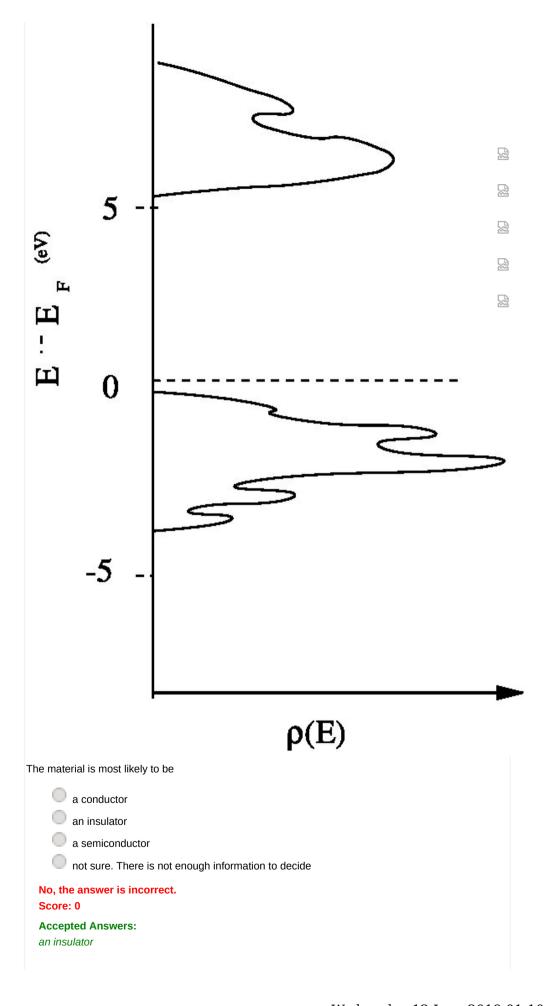
a suitable material for LED applications

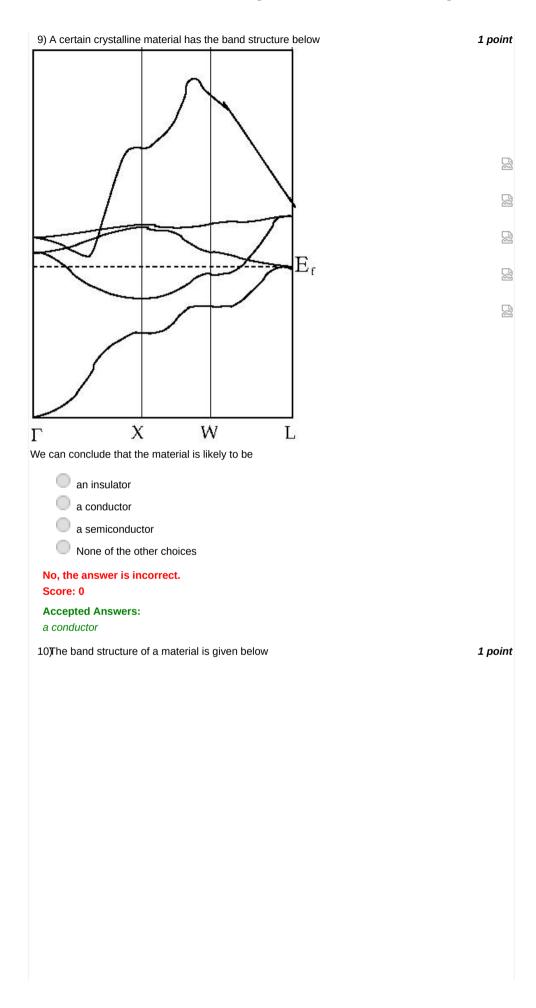
3) The light absorption efficiency of a material is higher if its band gap is

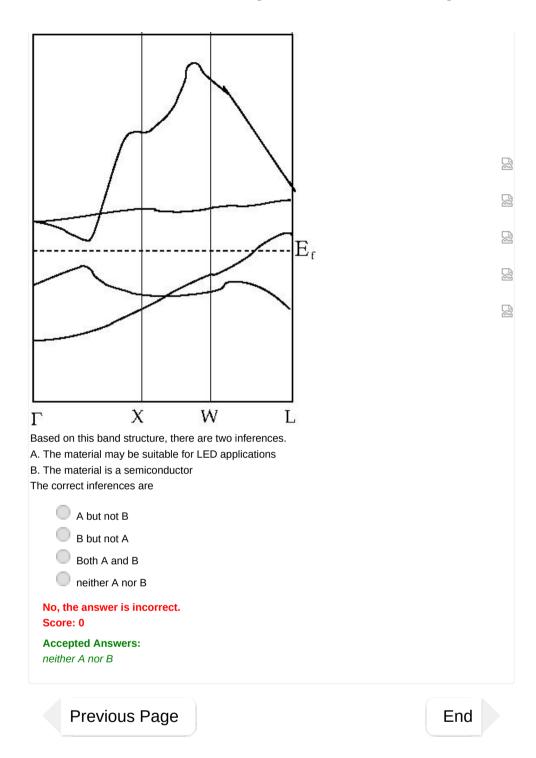
1 point

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

A project of




NASSCOM®


Funded by

In association with

Concepts related to X-ray Diffraction	Score: 0 Accepted Answers: direct
Week 9 : X - Ray Diffraction, X - Ray Crystallography & Electron	4) Consider a cube shaped crystal of copper of side $1\mu m$. Assuming that each copper atom $$ 1 point contributes one valence electron to the bands, the interval between bands in each dimensions of the wavevector (i.e. k_x, k_y or k_z) is closet to (in units of $(A^\circ)^{-1}$)
Microscopy	6
Week 10 : Common Crystal Structures	0.06 0.0006 0.00006
Week 11 : Theory of Electronic Structure of Solids	No, the answer is incorrect. Score: 0 Accepted Answers:
Interaction Session	5) The material that is most commonly used for large scale solar applications is 1 points
Week 12 : Theory of Electronic Structure of Solids, Part 2	GaAs GaN Ge
Lecture 56 : More about Band Theory, Crystal Momentum	No, the answer is incorrect. Score: 0 Accepted Answers: Si
Lecture 57 : Density of States	6) Of the materials below, the most efficient one for solar applications is 1 point Si
Lecture 58 : Metals, Insulators and Semiconductors	Ge Al GaAs
Lecture 59 : Band Gap and Optical Properties	No, the answer is incorrect. Score: 0 Accepted Answers:
Lecture 60 : Summary of Week 12 and Practice Problems	GaAs 7) A certain material has a band gap of 2 eV. The light emitted by an LED formed using this material is closest to
Quiz : Assignment 12	red light blue light
Feedback For Week 12	ultra-violet light
Assignment 12 solution	No, the answer is incorrect. Score: 0
	Accepted Answers: red light
	8) Consider the density of states given below 1 point

