Unit 14 - Week 11 : Theory of Electronic Structure of Solids

```
Register for Certification exam
```

Course
outline

How to access
the portal

Practice

Week 1 : Solid
State And Solid
State Materials

Week 2 Unit
Cells And
Lattices

Week 3 :

Symmetry In
Crystals Part 1

Week 4 :
Symmetry in
Crystals Part 2
Week 5 : Crystal Systems, Point Groups and Space Groups

Week 6 :
Crystallographic Notations

Week 7 :

Coordination number, voids, defects in

Assignment 11

The due date for submitting this assignment has passed.
As per our records you have not submitted this Due on 2019-04-17, 23:59 IST. assignment.

1) For a free electron in 3 dimensions travelling along the negative z direction, the waefunction 1 point in the usual notation is given by (here k is a componenet of the wavevector)

No, the answer is incorrect.
Score: 0
Accepted Answers:
$e^{-i k z}$
2) For an electron in 3 dimensions confined to a cubic box of length L located

1 point
between $x=0$ and $x=L, y=0$ and $y=L$ and $z=0$ and $z=L$, the wavefunction is proportional to (here n_{x}, n_{y} and n_{z} are positive integers)

$$
\begin{aligned}
& \sin \left(\frac{\left(n_{x}+n_{y}+n_{z}\right) \pi x}{L}\right) \\
& \sin \left(\frac{n_{x} \pi x}{L}\right) \sin \left(\frac{n_{y} \pi y}{L}\right) \sin \left(\frac{n_{z} \pi z}{L}\right) \\
& \sin \left(\frac{\left(n_{x}+n_{y}+n_{z}\right) \pi(x+y+z)}{L}\right)
\end{aligned}
$$

$\vec{k}=\frac{n_{x} \pi}{L_{x}} \hat{i}+\frac{n_{y} \pi}{L_{y}} \hat{j}+\frac{n_{z} \pi}{L_{z}} \hat{k}$ where L_{x}, L_{y}, L_{z} are the lengths of the cell in the three directions and n_{x}, n_{y}, n_{z} are integers

None of the other choices
No, the answer is incorrect.
Score: 0
Accepted Answers:
$\vec{k}=\frac{n_{x} \pi}{L_{x}} \hat{i}+\frac{n_{y} \pi}{L_{y}} \hat{j}+\frac{n_{z} \pi}{L_{z}} \hat{k}$ where L_{x}, L_{y}, L_{z} are the lengths of the cell in the three directions and n_{x}, n_{y}, n_{z} are integers
7) For a 1D lattice of size a in a crystal of size L, the separation between allowed values of $\mathbf{1}$ poi- ${ }^{\ddagger}$ the wave vector k is equal to
$2 \pi / a$
$2 \pi / L$
π / L
None of the other choices
No, the answer is incorrect.
Score: 0
Accepted Answers:
π / L
8) The concept of band gap is illustrated by

1 pointthe free electron modelthe free electron model with the constraint of lattice periodicitythe nearly free electron model where the electron interacts weakly with the periodic latticeNone of the other choices

No, the answer is incorrect.
Score: 0
Accepted Answers:
the nearly free electron model where the electron interacts weakly with the periodic lattice
9) The effect of lattice periodicity on the energy of a Bloch electron is given by the relation
$E(\vec{r})=E(\vec{r}+\vec{R})$ only if \vec{R} is a Bravais lattice vector
$E_{\vec{k}}=E_{\vec{k}+\vec{K}}$ only if \vec{K} is a reciprocal lattice vector
$E_{\vec{K}}=0$ only if \vec{K} is a reciprocal lattice vector
Done of the other choices
No, the answer is incorrect.
Score: 0
Accepted Answers:
$E_{\vec{k}}=E_{\vec{k}+\vec{K}}$ only if \vec{K} is a reciprocal lattice vectorcubetruncated octahedronrhombic dodecahedronNone of the other choices
No, the answer is incorrect.
Score: 0
Accepted Answers:
rhombic dodecahedron

Previous Page

```
End
```

