

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

In association with ASSCO Funded by

Concepts related to X-ray Diffraction	ce De (200) No, the answer is incorrect.	
Week 9 : X - Ray Diffraction, X - Ray Crystallography	Accepted Answers: (200)	
& Electron Microscopy	 4) For the structure determination of a protein crystal, the number of peaks required is typically in the range of 	1 point 🔛
 Lecture 41 : XRD - Analysis of Pattern 		ß
 Lecture 42 : Geometric Structure Eactor - 	 5000 No, the answer is incorrect. 	£
Missing Peaks	Score: 0	
 Lecture 43 : X - Ray Crystallography 	Accepted Answers: 5000	1 noint
Lecture 44 : Electron Microscopy	5)	1 point
 Lecture 45 : Review of Week 9. Practice Problems 		
Quiz : Assignment 9		
Assignment 9 Solution		
Feedback For Week 9		
Week 10 : Common Crystal Structures		
Week 11 : Theory of Electronic Structure of Solids		
Interaction Session		
Week 12 : Theory of Electronic Structure of Solids, Part 2		

Cs Cl can be considered as a simple cubic lattice of chloride ions with the caesium ion at the body center. Assume that f_{Cs} and f_{Cl} represent the atomic form factors of Cs and Cl respectively. The geometric structure factor for scattering from the (110) plane is equal to

0	
$f_{Cs}+f_{Cl}$	
$f_{\alpha} = f_{\alpha}$	
$\bigcirc 0$	
None of the other choices	
No, the answer is incorrect.	2
Score: 0	R
Accepted Answers: $f_{c_1} \rightarrow f_{c_2}$	
$f_{CS} + f_{CL}$	1 noint
factors for zinc and sulphur atoms respectively. The structure factor for scattering from the (121) Miller plane is equal to	ı point
•	
$f_{Zn}-f_S$	
$4(f_{Zn}+f_S)$	
$4(f_{Z_m}-f_S)$	
$\bigcirc 0$	
No, the answer is incorrect.	
Score: 0	
Accepted Answers: 0	
7) The atomic form factor for an atom in a crystal is related to	1 point
•	
the atomic mass	
the approximation number of the atom in the envited	
the number of stoms in the basis of the crystal	
No, the answer is incorrect. Score: 0	
Accepted Answers:	
the atomic number	
8) The intensity of the XRD peaks at high temperature is	1 point
O areater than at low temperature	
smaller than at low temperature.	
the same as that at low temperature. There is no temperature dependence in the XRD inter	nsities.
unrelated to that at low temperature. It can be higher, lower or equal depending on the crys	tal.
No, the answer is incorrect. Score: 0	
Accepted Answers: smaller than at low temperature.	

9) KCl also crystallizes in NaCl structure. The atomic form factors of potassium and chloride ion are identical. On indexing the XRD pattern for KCl, we will conclude that KCl is a	1 point
•	
simple cubic crystal	
face centered cubic crystal	
body centered cubic crystal	
None of the other choices	
No, the answer is incorrect.	223
Score: 0	
Accepted Answers:	2022
simple cubic crystal	_
simple cubic crystal 10The wavelength of electrons (in Angstroms) accelerated by 40 kV is closest to	1 poi
simple cubic crystal 10The wavelength of electrons (in Angstroms) accelerated by 40 kV is closest to 0.006	1 poi 🛱
simple cubic crystal 10)The wavelength of electrons (in Angstroms) accelerated by 40 kV is closest to 0.006 0.06	1 poi 🛱
simple cubic crystal 10)The wavelength of electrons (in Angstroms) accelerated by 40 kV is closest to 0.006 0.06 0.6	1 poi 🛱
simple cubic crystal 10)The wavelength of electrons (in Angstroms) accelerated by 40 kV is closest to 0.006 0.06 0.6 0.6 0.0	1 poi∰
simple cubic crystal 10)The wavelength of electrons (in Angstroms) accelerated by 40 kV is closest to 0.006 0.06 0.6 0.6 0.0 No, the answer is incorrect.	1 poi
simple cubic crystal 10)The wavelength of electrons (in Angstroms) accelerated by 40 kV is closest to 0.006 0.06 0.6 0.6 0.0 No, the answer is incorrect. Score: 0	1 poi
simple cubic crystal 10)The wavelength of electrons (in Angstroms) accelerated by 40 kV is closest to 0.006 0.06 0.6 0.6 0.0 No, the answer is incorrect. Score: 0 Accepted Answers:	1 poin
simple cubic crystal 10)The wavelength of electrons (in Angstroms) accelerated by 40 kV is closest to 0.006 0.06 0.6 0.6 0.6 0.0 No, the answer is incorrect. Score: 0 Accepted Answers: 0.06	1 poi

Previous Page

End