

1

Accepted Answers:

4) The wave function of a quantum mechanical particle is given by $A \cos(2x)$. The momentum **1** point of this particle

is exactly equal to $2\hbar$ is exactly equal to $-2\hbar$ can be either equal to $-2\hbar$ or equal to $2\hbar$ None of the above

Accepted Answers: can be either equal to $-2\hbar$ or equal to $2\hbar$

5) For a quantum mechanical particle in a box between x = 1 and x = 3, the wavefunction of **1** point the ground state is proportional to

 $cos(2\pi x)$ $cos(\pi x)$ $sin(\pi x)$ None of the above

Accepted Answers: None of the above

6) Consider the differential equation y'' - 2xy' + 2ny = 0. This equation can be put into **1** point Sturm-Liouville form using q(x) = 0 and p(x) = r(x) equal to

1 point

1 x^2 e^{-x^2} None of the above

Accepted Answers: e^{-x^2}

7) Consider the integral involving the Hermite polynomials $H_{\nu}(x)$ given by

$$\int_{0}^{\infty} H_{\nu}(x)H_{\nu'}(x)e^{-x^{2}}dx$$

The above integral is equal to zero unless |v - v'| equals

0

-1None of the above

Accepted Answers:

0

8) The associated Legendre Polynomials $P_l^m(x)$ satisfy the ODE

1 point

1 point

$$(1-x^2)\frac{d^2 P_l^m(x)}{dx^2} - 2x\frac{dP_l^m(x)}{dx} + \left(l(l+1) - \frac{m^2}{1-x^2}\right)P_l^m(x) = 0$$

When this equation is put into the Sturm-Liouville form, the value of r(x) is equal to

 $\frac{-m^2}{1-x^2}$ l(l+1)1
None of the above

Accepted Answers:

1

9) The Legendre Polynomials $P_l(x)$ satisfy the orthogonality relation

$$\int_{0}^{1} P_{1}(x)P_{2}(x)dx = 0$$

$$\int_{-1}^{1} P_{1}(x)P_{2}(x)dx = 0$$

$$\int_{-1}^{1} P_{1}(x)P_{2}(x)\cos xdx = 0$$
None of the above

Accepted Answers:

$$\int_{-1}^{1} P_1(x) P_2(x) dx = 0$$

10)Consider the equation

1 point

xy'' + (1 - x)y' + ny = 0

This equation can be converted into Sturm-Liouville equation by multiplying the entire equation by r(x) such that r(x) is equal to

	1
\bigcirc	
х	
\bigcirc	
e^{-x}	
\bigcirc	None of the above

Accepted Answers: e^{-x}