Assignment 7

```
1) Consider a simple harmonic oscillator given by
1 \text { point}
x}+\mp@subsup{\omega}{}{2}x=
The trajectories in the phase plane (x-\dot{x})\mathrm{ for real }\omega\mathrm{ have the shape of a/an}
    circle
     ellipse
    square
    None of the above
```


Accepted Answers:

ellipse
2) As $t \rightarrow \infty$, the solution to the damped harmonic oscillator given by

1 point

$$
\ddot{x}+3 \dot{x}+x=0
$$

, is approximately proportional to

$$
\begin{aligned}
& e^{-2.6 t} \\
& e^{-0.4 t} \\
& e^{-1.5 t} \\
& e^{-t}
\end{aligned}
$$

Accepted Answers:

$$
e^{-0.4 t}
$$

3) For a damped harmonic oscillator with $\gamma=2, \omega=2$, the critical point at $x=0, x=0$ is 1 point a
stable fixed point but not a spiral pointspiral point but not a stable fixed pointNeither a stable fixed point nor a spiral pointBoth a stable fixed point and a spiral point

Accepted Answers:

Both a stable fixed point and a spiral point
4) For a simple pendulum parametrized by angle θ, the point $\theta=3 \pi, \dot{\theta}=0$ corresponds to 1 point a/an
regular point

- stable fixed point
unstable fixed point
None of the above

Accepted Answers:

unstable fixed point
5) Linearizing the simple pendulum given by

1 point
$\ddot{\theta}+\omega^{2} \sin \theta=0$
near $\theta=2 \pi$ yields trajectories that look like
ellipses
hyperbolas
spirals
None of the above

Accepted Answers:

ellipses
6) The equation of the separatrix separating periodic and unstable motion of the simple

1 point pendulum given by
$\frac{\dot{\theta}^{2}}{2}-\omega^{2} \cos \theta=4$
is
$\dot{\theta}=-8 \cos (\theta / 2)$
$\dot{\theta}=8 \cos (\theta / 2)$
$\dot{\theta}=4 \cos (\theta / 2)$
None of the above

Accepted Answers:

$\theta=4 \cos (\theta / 2)$
7) Linearizing a nonlinear 2 nd order ODE about a critical point, and fitting the solutions to the 1 point form , it is observed that the real part of both the allowed values of are negative. The critical point is identified as a/an
stable point
asymptotically stable point

- unstable point

None of the above

Accepted Answers:

asymptotically stable point
8) Consider the population dynamics model given by 1 point $\dot{x}=2 x-x y$
$\dot{y}=-y+x y$

For this model, one of the critical points is located at the point (x, y) given by$(0,1)$
$(1,1)$
$(-1,2)$
None of the above

Accepted Answers:

None of the above
9) The critical point of the ODE $\ddot{x}+4 \dot{x}+3 x=0$ is

1 pointa nodea stable spiral pointan unstable spiral pointNone of the above

Accepted Answers:

a stable spiral point
10Performing linear stability analysis around a critical point, it is observed that both the
1 point eigenvalues (λ) are imaginary. The critical point in this case is a/annodecenter
spiral

- saddle

Accepted Answers:

center

