Assignment 7	
1) Consider a simple harmonic oscillator given by $x + \omega^2 x = 0$	1 poir
circle ellipse square None of the above	
Accepted Answers: ellipse	
2) As $t \to \infty$, the solution to the damped harmonic oscillator given by $\ddot{x} + 2\dot{x} + x = 0$	1 poir
x + 5x + x = 0	
$e^{-2.6t}$ $e^{-0.4t}$ $e^{-1.5t}$ e^{-t}	
Accepted Answers: $e^{-0.4t}$	1 poir

•

spiral point but not a stable fixed point

Neither a stable fixed point nor a spiral point

Both a stable fixed point and a spiral point

Accepted Answers: Both a stable fixed point and a spiral point

⁴⁾ For a simple pendulum parametrized by angle θ , the point $\theta = 3\pi$, $\dot{\theta} = 0$ corresponds to **1** point a/an

- regular point
- stable fixed point
- unstable fixed point
- None of the above

Accepted Answers:

unstable fixed point

5) Linearizing the simple pendulum given by

 $\ddot{\theta} + \omega^2 \sin \theta = 0$

- near $\theta = 2\pi$ yields trajectories that look like
 - ellipses
 - hyperbolas
 - spirals
 - None of the above

Accepted Answers: ellipses

6) The equation of the separatrix separating periodic and unstable motion of the simple **1** point pendulum given by

$$\dot{\frac{\theta^2}{2}} - \omega^2 \cos \theta = 4$$
$$\dot{\theta} = -8 \cos(\theta/2)$$
$$\dot{\theta} = 8 \cos(\theta/2)$$
$$\dot{\theta} = 4 \cos(\theta/2)$$

None of the above

Accepted Answers:

 $\theta = 4\cos(\theta/2)$

7) Linearizing a nonlinear 2nd order ODE about a critical point, and fitting the solutions to the **1 point** form , it is observed that the real part of both the allowed values of are negative. The critical point is identified as a/an

- stable point
- asymptotically stable point
- unstable point
- None of the above

1 point

8) Consider the population dynamics model given by $\dot{r} = 2r - rv$	
$\dot{y} = -y + xy$	
For this model, one of the critical points is located at the point (x,y) given by	
(0.1)	
(1,1)	
(-1,2)	
None of the above	
Accepted Answers:	
None of the above	
9) The critical point of the ODE $\ddot{x} + 4\dot{x} + 3x = 0$ is	
a node	
a stable spiral point	
an unstable spiral point	
None of the above	
Accepted Answers:	
a stable spiral point	
10Performing linear stability analysis around a critical point, it is observed that both the eigenvalues (λ) are imaginary. The critical point in this case is a/an	
node	
center	
spiral	
saddle	