Unit 7 - Week 6:

Assignment 6

1) The coefficient of x^{2} in the Taylor expansion of the function $f(x)$ given by $f(x)=\frac{1}{\sqrt{1+x^{2}}}$ is $\mathbf{1}$ point equal to

- 3

0
None of the above

Accepted Answers:

1
2) The radial part of the wavefunction of the a 3d electron in the hydrogen atom is given by 1 point $R_{3 d}(r) \propto r^{2} \exp \left(-r / 3 a_{0}\right)$. The maximum value of the radial probability distribution, $P(r)=r^{2}\left(R_{3 d}(r)\right)^{2}$, is obtained at a value of r / a_{0} of

- 1
- 3
- 9

None of the above

Accepted Answers:

9
3) The Van der Waals equation of state for a gas at some temperature relates the pressure $p \quad 1$ point and molar volume v via

$$
\left(p+\frac{a}{v^{2}}\right)(v-b)=\frac{4 a R}{27 b}
$$

where a, b, R are positive constants. In this case, the number of extrema of in the p-v graph is
0

- 1

2
3

Accepted Answers:

3

4) Consider the Van der Waals equation of a gas at some temperature given by $\left(p+\frac{a}{v^{2}}\right)(v-b)=\frac{8 a R}{27 b}$
where p is the pressure of the gas, v is the molar volume, and a, b, R are positive constants. The saddle point of this equation is obtained for a value of v of
0
b
$3 b$
None of the above

Accepted Answers:

$3 b$
5) Consider the Taylor series expansion of the function $\sin (x y)$ about the point $(0,0)$. The

1 point coefficient of $x y$ in the expansion is

0
-1

- 2
- $1 / 2$

Accepted Answers:

1
6) Consider a two-dimensional potential energy surface of the form
$V(x, y)=x y-x^{2} y^{2}+0.25\left(x^{2}+y^{2}\right)+0.125\left(x^{4}+y^{4}\right)$

The point $(1,1)$ is amaximum in all directions.
minimum in all directions.

- saddle point.

None of the above.

Accepted Answers:

saddle point.
7) The Hessian of the potential energy function $V(x, y)=x y-0.25 x^{2} y^{2}+0.25\left(x^{2}+y^{2}\right) 1$ point at $(0,0)$ is equal to-0.75-0.25
0None of the above

Accepted Answers:

-0.75
8) The maximum value of the function $f(x, y)=2 x-3 y$ on the circle $x^{2}+y^{2}=13$ is equal 1 point to

4
9
None of the above

Accepted Answers:

13
9) The number of saddle points of the function $x^{3}+y^{2}-3 x-3 y$ is

1 point
0

- 1
- 2
- 3

Accepted Answers:

2
10)The shape of a parallelopiped (sides a, b, c) with the

1 point maximum area $(2(a b+b c+c a))$ for a
fixed perimeter $(4(a+b+c)$ isa cubea square based cuboid but not a cubea cuboid with all three dimensions different
something that cannot be determined from the above information

Accepted Answers:

a cube

