Unit 6 - Week 5: 2nd
 Order ODEs, Power Series Method

Assignment 5

1) For which of the DEs below can the general solution be written as a linear combination of two 1 point linearly independent solutions?

$$
\begin{aligned}
& y^{\prime \prime} \sin x+y^{\prime} \cos x+y=0 \\
& y^{\prime \prime}+y^{\prime} \cos x+y^{2}=0 \\
& y^{\prime \prime}+y^{\prime}+3 y=1
\end{aligned}
$$

None of the above

Accepted Answers:

$$
y^{\prime \prime} \sin x+y^{\prime} \cos x+y=0
$$

2) The function $y=e^{3 x} \cos x$ satisfies the homogeneous ODE

1 point

$$
\begin{aligned}
& y^{\prime \prime}+\sin x y^{\prime}+3 \cos x y=0 \\
& y^{\prime \prime}+9 \sin x y^{\prime}+3 \cos x y=0 \\
& y^{\prime \prime}-6 y^{\prime}+10 y=0
\end{aligned}
$$

None of the above

Accepted Answers:

$$
y^{\prime \prime}-6 y^{\prime}+10 y=0
$$

3) The function $y=\sin 2 x+x$ satisfies the homogeneous ODE

$$
\begin{aligned}
& y^{\prime \prime}+4 x y^{\prime}+4 y=0 \\
& y^{\prime \prime}+\frac{4 x y^{\prime}}{2 \cos 2 x+1}+4 y=0 \\
& y^{\prime \prime}+4 x \sin 2 x y^{\prime}+4 y=0 \\
& \text { None of the above }
\end{aligned}
$$

Accepted Answers:

None of the above
4) The function $y_{1}=1+\cos x$ is one solution of the ODE $y^{\prime \prime} \sin x+y^{\prime}+y \sin x=0$. The 1 point other linearly independent solution is denoted by $y_{2}=u y_{1}$. The function u_{2} is given by

$$
\begin{aligned}
& \int[\ln (1+\cos x)+\tan (x / 2)] d x \\
& \exp \left(\int[2 \ln (1+\cos x)] d x-\tan (x / 2)\right) \\
& \exp (1+\cos x-\tan (x / 2) \\
& \text { None of the above }
\end{aligned}
$$

Accepted Answers:

$$
\exp \left(\int[2 \ln (1+\cos x)] d x-\tan (x / 2)\right)
$$

5) The general solution of the ODE $y^{\prime \prime}+4 y^{\prime}+4 y+2 e^{-2 x}=0$ is (a and b are arbitrary 1 point constants)

$$
\begin{aligned}
& e^{-2 x}\left(a+(b+2) x-x^{2}\right) \\
& \left(a-x^{2}\right) e^{-2 x}+(b+2) e^{2 x} \\
& (a+2 x) e^{2 x}+\left(b-x^{2}\right) e^{-2 x} \\
& \text { None of the above }
\end{aligned}
$$

Accepted Answers:

$$
e^{-2 x}\left(a+(b+2) x-x^{2}\right)
$$

6) The ODE $y^{\prime \prime}+5 y^{\prime}+6 y=0$ corresponds to a/an

1 point
underdamped harmonic oscillator.
overdamped harmonic oscillator
critically damped harmonic oscillator
None of the above

Accepted Answers:

overdamped harmonic oscillator
7) The correct statement regarding the solution of the $\operatorname{ODE}\left(1-x^{2}\right) y^{\prime \prime}+2 x y^{\prime}+y=0$ is 1 point
$x=0$ and $x=1$ are ordinary points of the ODE.
$x=0$ and $x=1$ are regular singular points of the ODE.
$\mathrm{x}=0$ is an ordinary point, but $\mathrm{x}=1$ is a regular singular point of the ODE.
None of the above

Accepted Answers:

$x=0$ is an ordinary point, but $x=1$ is a regular singular point of the ODE.
8) The correct statement regarding the solution of the ODE $\left(x^{2}-x\right) y^{\prime \prime}+\frac{x}{1-x} y^{\prime}+\frac{1-x}{x^{2}} y=01$ point is

The equation can be solved by the Frobenius method about $x=0$ but not $x=1$.The equation can be solved by the Frobenius method about $x=1$ but not $x=0$.The equation can be solved by the Frobenius method about $x=0$ and $x=1$.The equation cannot be solved by the Frobenius method about $x=0$ or $x=1$.

Accepted Answers:

The equation cannot be solved by the Frobenius method about $x=0$ or $x=1$.
9) The equation $y^{\prime \prime}-2 \alpha x y^{\prime}+(2 E-\alpha) y=0 \mid$, where E and α are constants is solved 1 point using the power series method with the function $y=\sum_{n=0}^{\infty} a_{n} x^{n}$. The recursion relation gives $\frac{a_{n+2}}{a_{n}}$ equal to

$$
\begin{aligned}
& \frac{n \alpha-E}{(n+1)(n+2)} \\
& \frac{2 \alpha+1-E}{(n-1)(n)} \\
& \frac{\alpha(2 n+1)-2 E}{(n+1)(n+2)} \\
& \text { None of the above }
\end{aligned}
$$

Accepted Answers:

$\frac{\alpha(2 n+1)-2 E}{(n+1)(n+2)}$
10)The dependent part of the solution of the Schrodinger equation for the quantum mechanical 3D rigid rotor using the power series method is expressed in terms of

Legendre polynomials
Associated Legendre polynomials

- Hermite polynomials

None of the above

Accepted Answers:

None of the above

