Assignment 4

1) $\left[\frac{d^{3} y}{d x^{3}}\right]^{2}+\sin (x) \frac{d^{2} y}{d x^{2}}+y x^{2}=e^{-x}$

1 point
The order and degree of the equation above are, respectively,
2 and 3
3 and 2
3 and 3
None of the above

Accepted Answers:

3 and 2
2) $\frac{d^{3} y}{d x^{3}}+3 \frac{d^{2} y}{d x^{2}}=0$

1 point
The number of unknown constants in the general solution of the DE above is
0

- 1
- 2

3

Accepted Answers:

3
3) $y^{\prime \prime}+2 x y^{\prime}=3 \sin (x y)$

1 point
The equation above is an example of a

Homogenoeous linear equation
nonhomogeneous linear equation
nonlinear equation
None of the above

Accepted Answers:

nonlinear equation
4)

1 point
$y^{\prime}=-\frac{4 x y+x}{2 x^{2}+y}$
The above equation can be solved by
Separation of variables
Exact differentials
an integrating factor that is a nonconstant function of xNone of the above

Accepted Answers:

Exact differentials
5) The integrating factor that converts the following differential equation

1 point $(3 x+x \sin y) y^{\prime}+4 y-2=0$ to an exact differential is
$\sin y$
$\sin x$
$\sin y+y$
None of the above

Accepted Answers:

None of the above

6) The general solution of the system of ODEs given below
$\frac{d x}{d t}=4 x-5 y$
$\frac{d y}{d t}=-x+y$
is of the form (a_{0} and a_{1} are constants)

$$
\begin{aligned}
& a_{0}\left[\begin{array}{c}
1 \\
-1
\end{array}\right] e^{4 t}+a_{1}\left[\begin{array}{c}
2 \\
-3
\end{array}\right] e^{-2 t} \\
& a_{0}\left[\begin{array}{c}
1 \\
1
\end{array}\right] e^{6 t}+a_{1}\left[\begin{array}{l}
2 \\
5
\end{array}\right] e^{-t} \\
& a_{0}\left[\begin{array}{c}
1 \\
-1
\end{array}\right] e^{-6 t}+a_{1}\left[\begin{array}{c}
2 \\
-5
\end{array}\right] e^{t} \\
& \text { None of the above }
\end{aligned}
$$

Accepted Answers:

None of the above

7) The particular solution of the ODE

1 point
$2 x y^{\prime}+3 y^{2}=0$
with boundary condition $y(1)=2$ is

$$
\frac{3}{2} \ln x+\frac{1}{2}
$$

$$
\frac{2}{3 \ln x+1}
$$

Accepted Answers:

$$
\frac{2}{3 \ln x+1}
$$

8) The concentration reactants A and B in a reaction follow the following evolution with time

1 point $\frac{d[A]}{d t}=-2[A]+3[B]$
$\frac{d[B]}{d t}=[A]-[B]$
Given that the initial conditions correspond to $[A]=1,[B]=1$ units, the concentration of A after 1 unit of time is closest to
0.5

- 1.2

Accepted Answers:

1.2
9) For a particular reaction, the concentration of the reactant A varies with time as $\frac{d[A]}{d t}=-2[A]^{2} t$
Given that at $t=0$, we have $[A]=2$, the concentration of $[A]$ after 5 units of time is exactly equal to2/51
$\square 5$
$\square 1 / 17$
\square None of the above

Accepted Answers:

2/51
10)The implicit solution of the ODE
$y^{\prime}=\frac{3 \tan x+\sin y}{x^{2}+\cos y}$
with the condition $\mathrm{y}(0)=0$ is given by

$$
\begin{aligned}
& y^{3}-\ln \sin x-3 \sin y=0 \\
& y^{2}-4 \sin x-3 x \sin y=0 \\
& y^{3}-9 \ln \cos x-3 x \sin y=0
\end{aligned}
$$

None of the above

Accepted Answers:

None of the above

