Unit 13 - Week 12: Complex Variables, Functions, Differentiation and Integration

Assignment 12	
1) The form of the complex number 4-3 <i>i</i> in polar variables is $5e^{i\pi/3}$ $5e^{i2\pi/3}$ $\sqrt{7} \exp(arctan(-4/3))$ None of the above	1 point
Accepted Answers: None of the above 2) The principal value of $log(e^2 + i)$ is 2 -2 2 + $i\pi/2$ None of the above	1 point
Accepted Answers: None of the above 3) The principal value of the complex number $log(-3)$ is $log(3) + 3i\pi/2$ ∞ $log 3 + i\pi$	1 point

Accepted Answers: $\log 3 + i\pi$	
4) Consider the complex function given by $f(z) = \frac{e^z}{1-e^z}$	1 point
The pole(s) of this function is(are) located at	
0	
$0, 0.5 + i\sqrt{0.75}, 0.5 - i\sqrt{0.75}$	
0.5, -0.5	
$1 + i\sqrt{3}, 1 - i\sqrt{3}, 0$	
Accepted Answers:	
$0, 0.5 + i\sqrt{0.75}, 0.5 - i\sqrt{0.75}$	
5) Consider a complex function given by $f(z) = \frac{1+z^2}{z}$	1 point
$\int (z) - \frac{1}{z(z-i)}$	
The point $z = i$ is a	
simple pole	
pole of order 2	
Accepted Answers: regular point	
6) The contour integral	1 point
$\int_C \frac{e^z}{2z} dz$	
where C is a clockwise unit circle centered at $z=2$ is equal to	
0	
$i\pi e^{2}/2$	
$-i\pi e^2/2$	
None of the above	
Accepted Answers:	
0	
7) The contour integral $z^2 = z^2$	1 point
$\int_C \frac{1}{(z+i/2)} dz$ where C is a clockwise unit circle centered at z=0 is equal to	
0	
0 1/16	
$l\pi l \Delta$	

None of the above

Accepted Answers: iπ/2	
8) The contour integral of the function $\int_{c} \frac{z+2}{z^{2}(z+0.5)} dz$ where C is the counterclockwise unit circle centered at <i>z</i> =0 is equal to	1 point
0	
$12\pi i$	
$-6\pi i$	
None of the above	
Accepted Answers:	
0	
9) The integral	1 point
$\int e^{ix}$	
$\int_{-\infty} \frac{1}{x^2+4} dx$	
$\int_{-\infty} \frac{1}{x^2 + 4} dx$ is equal to	
$\int_{-\infty}^{\infty} \frac{1}{x^2+4} dx$ is equal to 0	
$\int_{-\infty}^{\infty} \frac{1}{x^2+4} dx$ is equal to $\int_{-\infty}^{\infty} 0$	
$\int_{-\infty}^{\infty} \frac{1}{x^2 + 4} dx$ is equal to 0 $\frac{\pi}{2e^2}$	
$\int_{-\infty}^{\infty} \frac{1}{x^2+4} dx$ is equal to 0 $\frac{\pi}{2e^2}$ $i\pi/2$	
$\int_{-\infty}^{\pi} \frac{1}{x^2+4} dx$ is equal to 0 $\frac{\pi}{2e^2}$ $i\pi/2$ None of the above	
$\int_{-\infty}^{\pi} \frac{1}{x^2+4} dx$ is equal to 0 $\frac{\pi}{2e^2}$ $i\pi/2$ None of the above	
$\int_{-\infty}^{\pi} \frac{x^2+4}{x^2+4} dx$ is equal to 0 $\frac{\pi}{2e^2}$ $i\pi/2$ $None of the above$ Accepted Answers:	

29/12/2017 Advanced Mathematical Methods for Chemistry - - Unit 13 - Week 12: Complex Variables, Functions, Differentiation and ...