# Unit 13 - Week 12: <br> Complex Variables, Functions, Differentiation and Integration 

## Assignment 12

## 1) The form of the complex number $4-3 i$ in polar variables is <br> 1 point <br> $5 e^{i \pi / 3}$ <br> $5 e^{i 2 \pi / 3}$ <br> $\sqrt{7} \exp (\arctan (-4 / 3))$ <br> None of the above

## Accepted Answers:

None of the above
2) The principal value of $\log \left(e^{2}+i\right)$ is

1 point
2
-2
$\bigcirc$
$2+i \pi / 2$
None of the above

## Accepted Answers:

None of the above
3) The principal value of the complex number $\log (-3)$ is

1 point
$\log (3)+3 i \pi / 2$
$\infty$
$\log 3+i \pi$
None of the above

## Accepted Answers:

$\log 3+i \pi$
4) Consider the complex function given by $f(z)=\frac{e^{z}}{z\left(z^{2}+z+1\right)}$
The pole(s) of this function is(are) located at

$0,0.5+i \sqrt{0.75}, 0.5-i \sqrt{0.75}$

$$
0.5,-0.5
$$

$$
1+i \sqrt{3}, 1-i \sqrt{3}, 0
$$

## Accepted Answers:

$0,0.5+i \sqrt{0.75}, 0.5-i \sqrt{0.75}$
5) Consider a complex function given by

1 point
$f(z)=\frac{1+z^{2}}{z(z-i)}$

The point $z=i$ is a
simple pole
pole of order 2

- regular point

None of the above

## Accepted Answers:

regular point
6) The contour integral

1 point $\int_{C} \frac{e^{z}}{2 z} d z$
where $C$ is a clockwise unit circle centered at $z=2$ is equal to
$\square$
0
$i \pi e^{2} / 2$
$-i \pi e^{2} / 2$
None of the above

## Accepted Answers:

0
7) The contour integral

1 point
$\int_{C} \frac{z^{2}}{(z+i / 2)} d z$
where $C$ is a clockwise unit circle centered at $z=0$ is equal to
1/16
$i \pi / 2$
None of the above

## Accepted Answers:

$i \pi / 2$
8) The contour integral of the function 1 point
$\int_{c} \frac{z+2}{z^{2}(z+0.5)} d z$
where $C$ is the counterclockwise unit circle centered at $z=0$ is equal to
0
$12 \pi i$
$-6 \pi i$
None of the above

## Accepted Answers:

0
9) The integral

1 point
$\int_{-\infty}^{\infty} \frac{e^{i x}}{x^{2}+4} d x$
is equal to
$\bigcirc$
$\frac{\pi}{2 e^{2}}$
$i \pi / 2$
None of the above

## Accepted Answers: <br> $\frac{\pi}{2 e^{2}}$

